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ABSTRACT

The optical and electronic properties of single crystal Cu2S-CdS

photovoltaic cells have been investigated. In these cells trapped charge

near the interface which is manifested by a persistent increase in junc-

tion capacitance (the photocapacitance) plays a significant role in de-

termining the carrier transport properties.

We have found that the severe degradation in short-circuit current

observed in heat-treated cells can be separated into two components:

(1) a relatively small thermal component occurring on heat-

treatment in the dark and,

(2) a much larger degradation caused by exposure to light at room

temperature.

By a short additional heat-treatment above \100°C the cell can be com-

pletely restored to its condition before the optically caused degradation

with no effect on the depletion layer width. The optical degradation

effect is phenomenologically similar to so-called photochemical changes

in electron lifetime seen in CdS single crystal photoconductors.

The subsequent aims of our work have been:

(1) to gain a deeper understanding of heat-treatment effects in

single crystal cells

(2) to explore the effects of the thermally-restorable optical

degradation effect described above in both cells and photo-

conductors and determine the relationship of these effects to

the photocapacitance phenomena and carrier transport properties

(3) to determine the nature of the mechanism of short-circuit

current control in the cell.

xii



In order to accomplish these aims the dependence of short-circuit

current on wavelength of illumination, temperature, the state of optical

degradation, and of excitation of photocapacitance were measured in cells

with various degrees of heat-treatment. Similar measurements of the de-

pendences of dark, forward-bias current and junction capacitance versus

bias data were used to gain information on the structure of the junction

barrier.

Measurements on a Cu doped CdS crystal photoconductor verified the

presence of the same basic phenomena and showed that such a layer was

actively controlling carrier transport properties in the cell.

Work on the optical degradation effect itself shows it to be a

thermally controlled process with an activation energy of '0.4 eV occur-

ring at T > J200°K for the cell and T > '250°K for the photoconductor.

Thermal restoration was shown to occur at T > 350°K with an activation

energy of "1.6 eV.

Other important results of our research are:

(1) While the short-circuit current changes over a range of 103

with variation of state of degradation and of enhancement, the

shape of the spectral response of current curves are almost

constant. This implies that the CdS:Cu layer controls the

current while the properties of the Cu2 S remain relatively

unchanged.

(2) The similarity of the properties of the cell and the photocon-

ductor including all the optical degradation effects again

show that the CdS:Cu layer controls carrier transport in the

cell.

xiii



(3) Short-circuit current versus junction capacitance data show

that for the restored, low temperature and before heat-

treatment conditions the current depends exponentially on

depletion layer width.

(4) The dark, forward-bias current is directly proportional to the

short-circuit current over a wide range of cell states at room

temperature suggesting that the same mechanism controls both

currents.

Finally, a model is proposed in which both the short-circuit cur-

rent and the dark, forward bias current are controlled by a tunneling-

recombination process through interface states. Our model proposes that

changes in the junction profile resulting from optical charging of cen-

ters near the interface modifies the electric field at the barrier modu-

lating both currents in a fashion which is consistent with the observed

behavior.
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SYMBOLS

a exponential factor in diode equation, I = I o(expaV - 1),
(volts-l)

B constant

C junction capacitance (pF)

AC photocapacitance increment (pF)

D degraded; diffusion constant (cm2/sec)

6 rate of degradation (sec- 1 )

E enhanced

Eb  tunneling barrier (eV)

AE conduction band edge discontinuity at heterojunction (eV)
c

Ef Fermi energy (eV)

E bandgap (eV)
g

e permittivity (farads/m)

6 electric field (volts/m)

HT heat-treated

ISC short-circuit current in cell (amp)
sc

If dark, forward-bias current in cell (amp)

I current in photoconductor (amp)

2
J,' Jsc current density (amp/cm )

sc4
k Boltzmann constant (0.864 x 10 4 eV/°K)

X wavelength (p)

m* effective mass of electron (kg)

N acceptor density (cm 3 )
A

N donor density (cm 3 )
N(x) effective positive charge density in depletion region (cm )

N(x) effective positive charge density in depletion region (cm )3
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n electron carrier density (cm 3 )

n factor expressing effective quantum efficiency of Cu2S layer
(amp/watt) or (coul/photon)

P tunneling probability
t

Q quenched

q magnitude of electronic charge (1.60 x 10- 1 9 coul)

R restored

a conductivity (1/ohm cm)

T temperature (°C, °K)

t time (sec)

TROD thermally-restorable optical degradation

T time constant for photoconductivity decay (sec)

T electron lifetime (sec)
n

V, Vf forward bias voltage (volts)

VbV b barrier voltage (volts)

factor expressing effectiveness of current control by CdS:Cu
layer

Wd depletion layer width (p)

wi width of i-layer (p)

x distance from metallurgical interface (1)

X electron affinity (eV)
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Chapter 1

INTRODUCTION

1.1 Nature of the Problem

The photovoltaic properties of p-n homojunctions have long been

known and the theory is well established. In the homojunction the ef-

fective photoexcitation occurs within a minority carrier diffusion length

of the junction and since illumination by photons with energy greater

than or equal to the band gap energy must be used, there must be a com-

promise with ineffective absorption in the bulk of the p- or n-type

material. If the p-type material, for example, is made increasingly

thin then recombination at surface states begins to play an important

role in this compromise as well. In order to extend the range of spectral

sensitivity and to increase efficiency, it is desirable to replace one

side of the junction with a material of larger band gap, thus forming a

heterojunction. This in effect adds a window to the cell permitting all

the light with photon energy between the two band gap energies to reach

the junction region where effective photoexcitation occurs. The use of

heterojunction structures also effectively removes the fast recombination

surface states from the region where effective photoexcitation is taking

place.

The two most widely used systems for solar energy conversion at

present are the p-n Si (single crystal) cell and the Cu2S-CdS (thin film)

cell. The Si p-n junction properties are well known and the cell has the

advantages of higher efficiency and better long-term stability. The thin

film version of the Cu2S-CdS cell (the Cu2S is deposited by an aqueous

displacement reaction on an evaporated polycrystalline film of Cds) is

1



potentially less expensive to produce than its single crystal counter-

parts such as Si or GalxAlxAs-GaAs cells. In addition it has the ad-

vantage of mechanical flexibility and greater high energy radiation

resistance.

There are several areas of difficulty in obtaining an understand-

ing of the Cu2S-CdS system. (1) The basic heterojunction structure is

inherently complex because of joining materials with different electron

affinities, band gaps, carrier densities, and different crystal struc-

tures. (2) The lattice mismatch and interdiffusion of components causes

defect states at or near the interface which strongly affect the junction

properties. (3) A variety of Cu2 x S phases may exist at room temperature.

(4) There are the undetermined effects of grain boundaries, random crys-

tal orientation, and interface roughness in the thin film CdS cells. We

have chosen to eliminate the last category by working with single crystal

cells.

One of the basic problems with the CdS cell has been the loss of

efficiency with time. It has been proposed that a large fraction of this

loss is associated with Cu diffusion into the CdS which may occur during

heat treatment, over long periods of time during operation, or perhaps

by electric field assisted diffusion at high operating voltages. Other

sources of loss of efficiency are a change of phase of the Cu 2xS layer

due to the Cu diffusion above, or to chemical action of the atmosphere.

A major contribution to the investigation of loss of efficiency

associated with Cu diffusion has been the thermally-restorable optical

degradation (TROD) effect described in this thesis. The degradation

We shall reserve the term "degradation" for this phenomenon.We shall reserve the term "degradation" for this phenomenon.

2



occurring on heat treatment of a Cu2S-CdS cell (which is most severe in

single crystal cells) can be separated into two components: (1) a

relatively small decrease in short-circuit current, ISc caused by heat

treatment in the dark, and (2) a much larger decrease in I on subse-

quent exposure to light. This optical degradation can be removed by an

additional, short heat treatment at a lower temperature in the dark,

restoring the cell to its preoptically-degraded condition. This optical

degradation effect can be used to separate various heat treatment ef-

fects. A similar effect has been observed in CdS photoconducting crys-

tals by many workers, but not previously in Cu2S-CdS cells (because

room light quickly degraded the cells after heat treatment). To the

best of our knowledge, all previous measurements on these cells have

been in the optically degraded condition.

The aims of this research are:

(1) to gain understanding of heat treatment effects in single

crystal cells,

(2) to determine the conduction band profile in the junction

region and the nature of the current transport mechanisms, and

(3) to investigate the thermally-restorable optical degradation

effect and its relationship to the electrical properties of

the cell.

1.2 Historical Survey

... with a £titte heep JWm my 'Aiends - The Beetles

An historical survey of the development of the Cu2S-CdS cell and

of models describing its operation is presented here. Also outlined is

3



current thought on other aspects of the problem: Cu diffusion in CdS

and the properties of Cu2S.

1.2.1 The Cu2S-CdS photovoltaic Cell

The first reported observation of a photovoltaic effect in CdS

with Cu, Ag, or Au contacts was made by Reynolds, et al. in 1954. These

authors explained the cell's sensitivity to extrinsic radiation by a two-

step photoexcitation process through impurity levels in the CdS. Nadjakov,

2et al. appears to have made the first thin film CdS cells in 1954 using

Al and Au electrodes. About the same time efficient Si p-n junction

3solar cells were developed by Chapin, Fuller, and Pearson .

The need for power supplies for spacecraft simulated research di-

rected toward finding the mechanism for the photovoltaic effect in the

Cu2S-CdS system. In 1960 Williams and Bube compared electroplated

junctions of many metals on CdS and found that Cu gave the largest re-

sponse. Their junctions were not heat treated and they assumed that very

little Cu had diffused into the CdS. Thus they explained the observed

extrinsic response in terms of photoemission from the Cu metal into the

CdS. In 1962, Fabricus5, Grimmeiss and Memming6 , and Woods and Champion7

explained the operation of the Cu-CdS cell by postulating a p-n junction

either due to impurity band hole conduction (X1.2 eV below the conduc-

5,6 7
tion band) ' or due to p-type CdS . Grimmeiss and Memming found that

the output of their cells could be maximized by careful heat treatment.

The duration of the heat treatment was very critical--a maximum in the

short-circuit current was reached within 100 sec at 4600°C surface

temperature and then a severe decrease took place for longer heat treat-

ment times. Then they dissolved away the Cu contact completely in a

4



cyanide solution after heat treatment. Since these cells without

metallic Cu had essentially the same spectral response for photon ener-

gies below 2.4 eV as the Cu-CdS cells of other workers with metallic

Cu, they argued that the photoexcitation must take place in the CdS.

8 9
Cusano and Keating in 1963 offered a model in which the CdS

formed a heterojunction with Cu2S. Cusano, working with both CdS and

CdTe cells, proposed that the p-type Cu2S layer formed the necessary

potential barrier and that the exciting radiation was absorbed in the

CdS or CdTe. Cusano felt that previous workers had in reality formed

thin layers of Cu2 S even without apparent heat treatment.

Up to this time no great difference in properties had been found

between the Cu-CdS and the Cu2S-CdS cells. In both cases there may be

Cu diffusion into the CdS and in both cases there is the possibility of

a layer of Cu2 S. As late as 1966 Duc Cuong and Blair1 0 thought that the

important response was due to excitation from Cu impurity states in the

CdS.

Apparently beginning with Selle, et al. 1 1 (using evaporated Cu2S)
2

and Potter and Schalla 1 2 in 1967, workers in the last few years have at-

tributed the significant photoresponse to the Cu2S itself. Although the2

spectral response of CdS:Cu is similar to that of Cu2S, the absorption

in CdS:Cu is far too small to account for the observed quantum effi-

ciencies (approaching unity). Ergova 1 3 and Mytton 1 4 in 1968 showed that

the heat treatment was a necessary step in making an efficient cell and

proposed that the photoelectrons were injected from the Cu2S into the

CdS. Potter and Schalla1 2 noted enhancement of long wavelength response

by shorter wavelength illumination. They suggested that this effect

might be due to impurity levels in the CdS.

5



15Several of the more recent models including those of Shiozawa

16 17
Gill , and Lindquist are discussed in Section 1.2.4.

Modern commercial processes for the production of thin film cells

18
include a spray technique outlined by Chamberlain and Skarman . However,

the dipping process (in which Cu2S is formed on CdS by an exchange re-

action in an aqueous solution of Cu ions) produces the most reliable

and efficient cells (5 to 6% in normal sunlight) at present. This

19
method is described by Shirland and Hietanen .

One of the persistent problems connected with the Cu2S-CdS cell

has been the loss of efficiency over long periods of operation. This

has been extensively chronicled with reams of data which appear to mea-

sure the reliability of the testing apparatus rather than the cell.

However, the problem remains largely unsolved. Spakowski 20 and

15
Shiozawa 5 have given outlines of cell stability research.

Proceeding on the assumption that the loss of cell efficiency is

connected with Cu diffusion and/or oxidation, Konstantinova and Kanev2 1

have recently produced CdS cells by a replacement reaction using a Cu-

doped BiNO solution rather than the Cu+ ion solution usually used.3

Efficiencies of 3 to 5% and good stability have been reported without

an attempt to maximize these parameters.

1.2.2 Cu Diffusion in CdS

Throughout the development of Cu2S-CdS system cells, Cu has re-

mained a necessary constituent and heat treatment a vital step in fabri-

cation. The diffusion and solubility of Cu in CdS is intimately connec-

ted with the junction structure of the cell. Various workers measuring

the diffusion coefficient of Cu in CdS have obtained results differing

6



by as much as a factor of 100 at 200°C. Among them are Purohit2 2

(using a radioactive tracer method), Clarke2 3, Woodbury2 4 (who found two

diffusion rates--a slow one for high surface concentrations of Cu and a

25 26
faster one for low surface concentrations), and Heyding . Szeto 6 used

an optical absorption method to measure Cu diffusion. A very thorough

investigation has been done by Sullivan2 7 in the 1946 to 400°C tempera-

ture range by a compensation-capacitance technique. He obtained for the

diffusion constant parallel to the c axis, D. , and the solubility,

[Cu]max,

Dii = 2.1 x 10 3 exp{-0.96 eV/kT} cm /sec

22 3
and [Cu = 6.6 x 10 exp{-0.505 eV/kT} /cm3.max

Diffusion perpendicular to the c axis of the CdS is 10 to 100 times as

fast as that parallel to the c axis. Sullivan's data appear to be the

only data taken at common cell heat treatment temperatures (200 to 2500C)

and his value of D,, is lower than any other value obtained by extrapola-

tion to that temperature range from higher temperature data.

24
As suggested by Woodbury , Cu diffusion in CdS may be complex,

involving two separate processes which proceed at different rates. This

may in part account for the disparity in the values of D reported in the

literature. Another reason for this disparity may be the extremely rapid

diffusion along dislocations close to the CdS surface coupled with the

higher diffusion rate perpendicular to the c axis, both effects reported

by Sullivan 7.

Incorporation of Cu in CdS is thought to be substitutional at Cd

sites, most commonly in the form of complexes associated with native

7



defects in the CdS (Aven and Prener 28). Other workers have discovered

precipitates of Cu2S in CdS at room temperature: Dreeben 2 9' 3 0 (for Cu2

concentrations exceeding 0.02 weight %), Vitrikhovskii 3 1 (who explained

apparent hole conductivity of CdS by precipitates of Cu2S in a matrix

32
of CdS), and Szeto . A retrograde solubility (solubility increasing,

reaching a maximum, and then decreasing with increasing temperature)

has been reported by Dreeben3 0 with a maximum of 0.2 weight % of Cu at

475 to 650°C. Quenching preserves this solubility metastably and pre-

cipitation occurs on aging at room temperature. This precipitation may

account for some of the temporal changes reported in the photoconductivity

of CdS. Dreeben found no p-type conductivity in the supersaturated con-

dition at room temperature however.

Field assisted diffusion in CdSe has been studied by Matsuda3 3 who

showed that there was diffusion from a Cu contact positive with respect

to the CdSe. No diffusion occurred when the Cu contact was negative.

The corresponding problem of Cd diffusion away from the junction

region during Cu2S layer growth is qualitatively discussed by Hill and

34
Kermidas .

1.2.3 Properties of Cu2S

A number of "copper sulfides" exist at room temperature with com-

positions close to the stoichiometric value. Little research has been

done to identify the particular composition forming the "Cu2S-CdS" cell

(except for teVelde6 3 ) so most workers have not been specific about the

limits of composition. In this paper we refer to the material as Cu2S

unless it is necessary to be more specific, in which case Cu 2xS is used.

8



Cu2S is a degenerate p-type semiconductor with a carrier density

of 1019 to 10 20/cm provided by Cu vacancies (Kryzanavskii35). An in-

direct band gap of 1.2 eV exists at 300°K (Marshall and Mitra 3 6) and

there is a direct band of 1.8 eV at 300°K according to Abdulla et al.3 7

The optical absorption spectrum has been measured by numerous

38 39workers including Eisenmann ; Sorokin et al. 39; Shiozawa, Sullivan,

40 41
and Augustine ; and Selle and Maege . A number of the results have

been summarized by Shiozawa et al.1 5

The phase diagram of Cu2S has been investigated quite intensely

22
because of the mineralogical importance of Cu2 S and its potential as a

thermoelectric material. The stable form of Cu2S at room temperature

is very complex, containing 96 molecules of Cu2S per unit cell. The

material has several possible phases at room temperature:

Chalcocite (Cu2S), orthorhombic structure at 300°K, transforms

hexagonal at 104°C.

Djurleite (Cul 96S), orthorhombic or pseudo-orthorhombic at 300°K,

transforms to tetragonal at 86°C, and to cubic at 100°C.

Diginite (Cul 1.8S), pseudo-cubic at 300°K, transforms to cubic at

78°C.

A good review of existing data is given by Cook in reference 15.

Singer and Faeth 2 found a preferred orientation between Cu2S

grown on CdS with the a and c axes aligned. Sizable CdS crystals may

be transformed into oriented polycrystalline Cu2S by the dipping method.

A good discussion on this point is given by Cook, et al.4 3 who describe

the relationship between the Cu2 S phases and CdS.

The lattice constants of chalcocite are a = 11.9 A, b = 27.3 A,

and c = 13.5 A. During crystalline modification the sulphur lattice

9



remains virtually unchanged while the Cu atom positions are altered

(according to Heyne 44). Examination of the lattice constants of CdS

and chalcocite shows nearly integral relationships between them:

3 a(CdS) exceeds a(Cu2S) by about 4.5%, 2 c(CdS) is nearly equal to

c(Cu2S) with about 0.4% difference, and 8 b(CdS) exceeds b(Cu2S) by

4.8%. A portion of this strain is relieved by cracking of the Cu2S. A

large density of interface states is expected to result from this lat-

tice mismatch.

A comparison of the optical properties of Cu2S, Cul 96S, Cu 1 .9 S

and Cu 8S has been made in 1972 by Mulder6 4%l,,.8

1.2.4 Recent Models of the Cu2S-CdS Cell

The processes involved in a photovoltaic cell include: (1) photo-

excitation, (2) injection and charge separation, (3) loss (e.g., by

recombination or reinjection), and (4) collection (usually through ohmic

contacts). Initial research on Cu2S-CdS system was concerned mainly with

the first two processes. As models evolved, the proposed origin of the

effective excitation changed from the Cu layer (by photoemission), to the

CdS (with the Cu or Cu2S layer playing a passive role), and finally back

to an active Cu2S layer. Consideration of loss mechanisms in the cell

(other than simple optical reflection or absorption losses) became more

sophisticated to include enhancement effects (Potter and Schalla 12), a

photoconducting layer (Shiozawa40), conduction band spikes (Lindquist 45),

and recombination at interface states (Gill 646).

Most (but not all) researchers now agree on the following points:

(1) The active layer in which extrinsic photoexcitation occurs

*
We refer to energies smaller than the CdS band gap as extrinsic.
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is Cu2_xS, from which the electrons are injected into the CdS.

(2) The forward bias current flows through the junction by tun-

neling and/or recombination at interface states, rather than

over the barrier into the Cu2S conduction band.

(3) Diffusion of Cu into the CdS occurs during heat treatment and

widens the depletion layer on the CdS side by compensation of

CdS donors. This modification of the CdS plays an important

role in determining the junction properties of the cell in

virtually all the models proposed. Heat treatment is neces-

sary for the production of good thin film cells.

(4) Long wavelength response is enhanced by short wavelength illu-

mination. The response to simultaneous illumination by a long

and a short wavelength light for example will be considerably

more than the sum of the responses to the long and short wave-

lengths used alone. This nonadditivity is strongly increased

by heat treatment of the cell.

(5) The dark and light forward-bias current versus voltage curves

cross in the heat treated cell, rather than just being dis-

placed by the amount of the short-circuit current as in the

ideal photovoltaic cell.

(6) Long term loss of cell efficiency occurs due to a chemical

reaction in the Cu2S and/or Cu diffusion into the CdS.

A good comparative discussion of models prior to and including the

Clevite model (Shiozawa 40 , 1968) is given by van Aershodt et al.4 7

(1971).

The major uncertainty remaining is over the mechanisms that con-

trol the magnitude of the injected photocurrent. Some of the proposed

11



nearly all the light absorption takes place.

(2) The junction current is controlled by a series photoconduct-

ing layer of Cu doped CdS (i-CdS) which is insulating in the

dark and weakly n type when illuminated. Optical quenching

effects are associated with this layer.

(3) The important photovoltaic junction under illumination is

between the Cu2S and the i-CdS. There is no barrier to in-

jection of carriers into the CdS.

(4) In the dark, the important junction is between the i-CdS and

the n-CdS substrate with a potential barrier of '1.2 eV.

This means that the i-CdS is slightly p-type in the dark.

12

C

mechanisms are:

(1) the presence of various phases of Cu2_xS with different

quantum efficiencies for excitation,

(2) the direct control of injection by a spike in the conduction

band of the Cu2S at the junction interface,

(3) a series photoconductive layer of CdS:Cu with, for example,

space-charge-limited-current control of short-circuit and

dark forward bias current,

(4) recombination loss in bulk and/or interface states, and

(5) reverse tunneling through interface states.

The Clevite model and the Stanford model (due to Bube, Gill, and

Lindquist) are perhaps most important currently. The basic features of

the Clevite model (for front wall cells which have been heat treated at

250°C) are:

(1) Photoexcited carriers are injected from the CuS layer where



(5) The crossing of the light and dark If-V curves is due to the

change of the effective junction position from the i-CdS,

n-CdS interface in the dark to the Cu2S, i-CdS interface

under illumination. Each junction has different transport

properties.

(6) Under forward bias the current recombines through Cu2S,

i-CdS interface states which form a pathway through the

junction. This current is probably space charge limited.

The principal features of the Stanford model are:

(1) Carriers are injected from the Cu2S as in the Clevite model.

(2) Electron injection into the CdS is controlled by a spike in

the Cu2S conduction band at the Cu2S-CdS interface, or by

recombination through interface states (an alternative mecha-

nism suggested by Gill 46).

(3) On heat treatment, a partially compensated layer of CdS:Cu is

formed with impurity levels at 0.3 and 1.1 eV above the

valence band.

(4) Optically induced hole trapping at states in the CdS near the

interface modulates the barrier profile with an accompanying

change in junction capacitance. The barrier profile in turn

controls injection and/or recombination. Shorter wavelengths

of illumination increase hole trapping, narrowing the barrier

and increasing cell current (enhancement). Long wavelengths

or thermal emptying makes the charge on these states more

negative, increasing the barrier width and decreasing cell

current (quenching).

13



(5) The forward bias current is dominated by tunneling through

the barrier via interface states. Since the width of the

barrier is modulated by light, the crossover of the dark and

light I-V characteristics is expected.

(6) The enhancement of long wavelength short-circuit current res-

ponse by short wavelength illumination is due to the effect

on the conduction band spike of the enhancement and quenching

described in item 4.

(7) After the enhancing light is turned off, enhancement persists

over time periods of hundreds of seconds at room temperature

and for very long times at low temperatures (at least hours

and perhaps stable at 105°K).

(8) Heat treatment widens the Cu doped CdS layer, increasing the

significance of the above effects.

Other recent models include contributions by Duc Cuong and Blair1 0

and Balkanski and Chone50 (both 1966) who suggested that the effective

photoexcitation is from interface states rather than either the Cu2S or

the CdS. Massicot5 1 (in 1972) and Boer, et al. 5  (1970) proposed a three-

layered structure of Cu2S, Cul 9 6S , and CdS. The Cul 96S (Djurleite)

interlayer with effective band gap assumed to be 1.8 eV, forms a potential

barrier which controls the injection of electrons of energy less than

1.8 eV from the Cu2S. The Djurleite layer forms chemically by diffusion

of Cu into the CdS and can be restored to Cu2S by a photochemical process

involving ionization of Cu vacancies by trapping electrons created by il-

lumination with short wavelength light. The vacancies move by field

*-

Reported by Massicot as 2-x = 1.93 and by most other workers as
2-x = 1.96.
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assisted diffusion into the Cu2S layer changing the Djurleite into Cu2S

thus explaining the enhancement effect. While such a layer might be able

to control the cell output, this model does not explain the increase of

junction capacitance by near intrinsic light which accompanies the en-

hancement effect. The creation of the Djurleite layer of the Massicot-

Boer model would eventually exhaust the Cu supply of the Cu2S and make

further "enhancement" impossible. It has been observed, however, that

enhancement and quenching can be recycled indefinitely without change in

the cell properties.

Miya4 8 (1970) proposed two quite different heterojunction models

for cells formed on the a and b faces of the CdS crystal, one of which

included a p-type CdS layer. A model in which the barrier height is

controlled by interface state charging by hole injection from the Cu2 S

49
into the CdS was proposed by Lindmayer 9 in 1970.

None of the above models includes the thermally-restorable optical-

degradation effect studied in this investigation.
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Chapter 2

THEORY

"God made truth with many doors to welcome evevy believer

who knocks on them" - Kahlil Gibran

In this chapter we outline the basic theory of the homojunction

and heterojunction diodes with respect to their use as photovoltaic

cells. In particular we consider the tunneling-recombination mode of

carrier transport through heterojunctions which have a large density of

interface states. After discussing the theory of junction capacitance

measurements we present a short discussion of photochemical reactions in

CdS crystals.

2.1 The Basic p-n Diode and Photovoltaic Cells

The theory of both homo- and heterojunctions is well documented and

we outline it here principally in order to define terms.

The p-n homojunction (where the materials making up the junction

differ only in carrier type and density) is well explained by the Shockley

diffusion model which assumes in part that (see Fig. 2-1):

(1) The electron and hole currents are controlled by diffusion and

the built-in field.

(2) The junction barrier profile is given by the abrupt depletion

layer approximation.

(3) No recombination or generation occurs in the junction region

and the e' and h° currents are constant in the depletion layer.

(4) Boltzmann statistics apply.

PRECEDING PAGE BLANK NOT FMID
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FIG. 2-1. Energy band diagram for a forward biased p-n homojunction.

(5) The injected minority carrier densities are small compared

to the majority carrier densities so that their charge does

not modify the band profile.

Such a model leads to the current-voltage relationship

J = JO {exp (qVf/nkT) - i}

where n is a numerical factor equal to one in this case. In real but

close to ideal junctions 1 < n < 2. J is given by
0

J = q {npL /T + PnLp/Tp}
o pn n n p p

where n and pn are the minority carrier densities in the p- and n-type
P
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materials respectively and L and T are the diffusion length and minor-
n n

ity carrier lifetime for electrons in the p-type material. L and T are
P P

the corresponding quantities for holes in the n-type material.

If we consider recombination at states in the forbidden band in the

junction region, a term

JR = CxvtNtwdni {exp(qVf/2kT) - 1}

is added to the junction current where a is the capture cross section of
x

the recombination centers, Nt is their density, vt is the electron's

thermal velocity, wd is the depletion layer width, and ni is the intrin-

sic carrier density of the material. Note the temperature dependence

of the log JR versus Vf slope for this term is proportional to 1/2kT

In real devices we must consider the effects of series and shunt

resistances. Although these are distributed parameters their effects

are well represented in most cases by an equivalent circuit such as shown

in Fig. 2-3 (omitting the current source). For Vf > 2RsIoexp(qVf/~kT),

the series resistance R (arising mainly from the contacts and the bulk
S

material of the diode) will dominate the I versus Vf characteristic with

a Vf/R s dependence. In the low current region, the shunt resistance Rt

(mainly due to leakage across the junction) dominates for I ' Vf/2Rt,

again giving a linear dependence of I on voltage. These effects are

102considered in Si solar cells by Stirn 0 2.

Formation of a quasi-insulating layer (by compensation of donors

adjacent to one side of the junction for example) changes the basic

diode to a so-called p-i-n structure. The forward characteristic isn't

modified in general unless w. > L , where wi is the i-layer thickness
1
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FIG. 2-2.
cell.

V

Dark and light I-V characteristics for an ideal photovoltaic
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Equivalent circuit for the photovoltaic cell.
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and L is the ambipolar diffusion length in the region. When w > L,
a We wi a L

the I-Vf characteristic may be dominated by space-charge-limited flow

depending on whether single or double injection is occurring and on the

presence of traps in the i-layer. This situation has been studied for

9
the Cu2S-CdS system with thick (>10p) i-layers by Keating . The presence

of space-charge-limited current is usually indicated by a power law de-

pendence of If on Vf.

For an ideal photovoltaic cell we assume the following:

(1) Uniform illumination.

(2) Uniform absorption of photons within a minority carrier dif-

fusion length of the junction interface.

(3) Photoexcited carrier density negligible compared to the

majority carrier density.

For these conditions the dark J versus Vf characteristic is just dis-

placed by the short-circuit photocurrent, J = qg(L + Ln), for a

volume generation rate g so that (see Fig. 2-2)

J = J {exp(qVf/kT) - 1} - qg(L + L).

Thus the short-circuit current is proportional to light intensity. The

temperature variation of JSC is that of L and L , so that for lattice
sc p n

scattering J X (L + L ) T- 1 / 4 , and for charged impurity scattering
SC p n

5/4
J T5 / . For the open-circuit voltage Voc, the temperature variation
Jsc

of J dominates and as the temperature goes to 0°K, Voc approaches E /q,
0 oc g

where E is the band gap of the material.
g

Consideration of the effects of series and shunt resistance leads to:

* 16
Gill finds L = 3-5p in un-HT cells

a
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I = I f{exp a(Vf - IRS)} + (Vf - IRS)/R t - ISc

01 e r f s i f s th Sidfctr

where a is the diode factor. (a = qVf/nkT for the Shockley diode.)

2.2 Heterojunctions

When semiconductors of two different materials are joined, a hetero-

junction is formed with differences in band gap Eg, electron affinity X,

work function ~, and crystal structure across the junction. In addition

to the built-in potential (analogous to that in the simple homojunction

diode), discontinuities are introduced in the conduction and valence

bands by the differences in band gap and electron affinity of the two

materials. The resulting band profile is shown in Fig. 2-4. This so-

called abrupt junction model (which neglects interface states) developed

by Anderson5 4 and others is a straightforward modification of the homo-

junction diffusion model of Shockley.

In graded junction theory due to Van Ruyven and Williams1 0 3 and

others there is a more gradual change from one material to the other due

to alloying with the result that the discontinuities are smoothed. How-

61ever, according to Van Ruyven61 the abrupt junction theory may be more

appropriate for the Cu2S-CdS cell since these materials do not form

mixed crystals. Although considerable interdiffusion doping may occur,

the solubility limits the proportion of Cu in the CdS for example, to a

percentage which is too small to affect the CdS band gap. Thus the

transition region from one band gap and electron affinity to the other

is very thin. An excellent review of current thought on heterojunctions

61is given by Van Ruyven .

Heterojunctions can have several different configurations of course

but the one in which we are particularly interested is shown in Fig. 2-4.
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The conditions imposed by our system, Egl < Eg2 and NA1 >> ND2, offer some

simplification. The proportion of the barrier voltage, Vb = Vbl + Vb2,

appearing on either side of the junction is given by Vbl/Vb2 = ND2 2/NAlE1

for zero bias so that in the Cu2S-CdS cell Vbl is very small. The other2 bl

condition, Eg1 < Eg2 , implies (given the doping of our materials) that

the barrier for holes traveling to the right is much larger than that

for electrons traveling to the left and that the hole current can be

neglected for most situations of interest.

Interface states formed as a result of lattice mismatch between

the two crystal structures making up the junction may have a large ef-

*
fect on its electrical transport properties.

For large lattice mismatches the density of interface states due

to dangling bonds is large and they are confined to a thin region. For

smaller mismatches it is energetically more favorable to spread the inter-

face states over a thicker region. If a system with a given lattice mis-

match is graded the number of interface states is not reduced. Oldham

and Milnes5 6 estimate the surface density of interface states of most

13 2
heterojunctions of interest to be at least 5 x 1013/cm .

Defect states near the interface formed by interdiffusion doping

may play a role similar to that of the interface states and in practice

it may be difficult to distinguish the two kinds of states.

Interface states can play two roles in the heterojunction:

(1) they may have a large effect on junction current transport by acting

as recombination and/or tunneling centers and (2) they may modify the

band profile in the junction region by trapping charge.

*
The possibility of interface dipoles is not considered here because the
simpler model is sufficient to explain the results.
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One treatment of current transport through interface states sug-

gested by Oldham and Milnes 5 6  and Donnelly and Milnes10 4 involves the

assumption of a metal-like layer of recombination centers between the two

semiconductors. The carriers are thermally excited over Schottky bar-

riers to the recombination layer as shown in Fig. 5-2. Because of the

thermal excitation the model would be expected to lead to a current-

voltage dependence proportional to exp{AVf/kT} where A is a constant.

Since the recombination centers are treated collectively forming the

quasi-metallic layer, assumptions must be made about the minority car-

rier transmission coefficient of the layer as well as about the position

of the quasi-Fermi levels there.

A treatment involving both tunneling and recombination through

individual interface states is proposed by Riben and Feucht 5 8 to account

for the temperature independence of the log I versus Vf slopes and the

absence of minority carrier injection observed in many heterojunctions.

They propose a qualitative model involving recombination from the con-

duction band to states near the junction interface followed by tunneling

to the valence band of the other material (or vice versa). Such a model

had been used by several workers to explain the excess current in Esaki

105 106 - saporaetunnel diodes (Chynoweth et al. , Sah ). Figure 5-8 is appropriate.

Riben and Feucht's model assumes:

(1) Tunneling is the rate limiting process.

(2) Tunneling takes place through the base of a triangular energy

barrier with the current density given by

J = BNt exp {-4(2m*)l/2 Eb/3qhF}
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where B is a constant, Nt is the density of interface states,

m* is the effective mass of the electrons, Eb is the barrier

height and F is the electric field.

(3) The electric field (represented by the slope of the band

edges) is given by a maximum approximation for a standard

constant donor density depletion layer:

F ={2qND2(Vb- Vf)/E21}

(4) The barrier height is given by q(Vb - Vf) and thermal excita-

tion to tunneling levels higher than the bulk conduction band

level is not considered.

Such a model leads to the following relationship for the dark,

forward-bias current:

J = BNt exp {-a(Vb - KVf)}

-4 M* I )1/2
= 3 (m*2/ND2)2

and K = 1/(1 + NAl l/ND2e2) expresses the proportion of the applied volt-

age appearing on the n-type side of the junction (K = 1 in our case).

According to this model the slope of the in J versus V character-
f

istic is independent of temperature. At constant bias voltage the cur-

rent depends on the variation of Vb with temperature. If the band gap of

the Cu2S is assumed to vary linearly with temperature (with a coefficient,

A) then, to a first approximation, the constant bias current varies as

exp (+AEg2T/q).
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Since theoretical values of a were higher than those obtained

experimentally, Riben and Feucht modified their model to use a staircase

59
tunneling pathway involving several centers within the forbidden band5 9.

Lindquist 7 treated a similar problem for Cu2S-CdS heterojunctions2

in which the tunneling and recombination were assumed to be through a

layer of interface states with a uniform distribution in energy, and

thermal excitation to levels higher than the bulk conduction band level

was included. The resulting expression for the dark, forward-bias cur-

rent could not be integrated exactly. However, an approximate integra-

tion yields

AI k A 2 exp {-2n(Vb - Vf)}
(q/kT - 2Sn)

for q/kT > 2an and with a = (1/¶i)(m*E2/ND2)1/2 where A and n are constants.

This expression again gives a in I versus Vf slope which is almost inde-

pendent of temperature.

Modification of the junction band profile by charging of interface

states is the other major effect of these states on the junction trans-

56
port properties. Oldham and Milnes found that in n-n Ge-Si heterojunc-

tions a charged layer of interface states moved the band edges with

respect to the Fermi level producing a double depletion layer which con-

trolled current transport. The best evidence for such a double depletion

layer is a reversal in sign of the photovoltaic current generated by such

junctions as the wavelength of the illumination is changed. The conduc-

tion band edge slopes downward on both sides of the interface. Thus

photon energies just larger than the smaller band gap produces current

of one sign. Photon energies greater than the larger band gap cause
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photoexcitation on the other side of the interface and a current of

opposite sign which dominates the total current. This has been observed

98
by Van Ruyven, et al. in n-n Ge-GaP heterojunctions and by Van Opdorp

99
and Vrakking99.

In the Cu2S-CdS junction the movement of the band edges with

respect to the Fermi level due to interface state charging is effectively

limited on the Cu2S side by the large acceptor density there. Thus most

of the change effected by trapping of charge at interface states occurs

on the lightly doped CdS side.

Gill1 6 and Lindquist 1 7 proposed such trapping effects as a mecha-

nism for control of current transport in the Cu2S-CdS cell. Certain

states could be optically charged by short wavelength illumination and

the resulting positive charge density decreased the width of a conduction

band spike to enhance the cell photocurrent. These effects were inter-

preted as being due to defect states in the CdS near the metallurgical

interface but characteristic of the bulk CdS. Decreasing the positive

charge (and the cell current) can also be accomplished optically.

Details of these effects in Cu2S-CdS cells are given in Sections 1.2.4

and 4.3.7.

2.3 Junction Capacitance

When a junction is formed between semiconductors with different

work functions, 1,' 42' a redistribution of charge takes place. This

redistribution forms an extended dipole layer which supports the barrier

voltage resulting from the alignment of the Fermi levels. In each

material the necessary charge is provided by the formation of a depletion

layer whose width adjusts itself according to the available free carrier

28



density so that overall charge neutrality is maintained. The relation

between barrier voltage, junction capacitance, and the free carrier

densities follows directly from the solution of Poisson's equation and

the requirement of overall charge neutrality.

An excellent treatment of the basic theory is given by Gossick6 2

and Van opdorp has derived the C-V relations for many common doping

92
profiles .

For uniform doping on both sides of a p-n heterojunction, the

capacitance per unit area, C, is given by:

1/C = 2 el N ND  (Vb -Vf)
q c1c 2NAl ND2 j

where Vb = (1- 2)/q is the barrier voltage, Vf is the forward bias

voltage, NA1 and ND2 are the net acceptor and donor densities of the p-

and n-type materials respectively, and el,' 2 are their permittivities.

For NA1 >> ND2 this reduces to

2
1/C = 2(Vb - Vf)/C2ND2 q (2-1)

and the depletion layer is almost entirely on the lightly doped side.

(We shall henceforth let £2 
= E and ND2 

= ND). Note that ND is the total

positive charge density in the depletion region which may include filled

hole traps as well as ionized donors. Extrapolation of the linear 1/C2

2
versus Vf curve to 1/C = 0 gives the barrier voltage and the slope of

the curve gives ND.  In general data for forward biases greater than

~Vb/2 is unreliable because of carrier injection effects.

If ND is a function of distance from the interface, ND = N(x), the

1/C versus V curve is no longer a straight line but for NA1 >> N(x) we

A29
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can still obtain N(x) from the slope of the curve. We obtain

dVf 2
N(x) = 2 2 (2-2)

d(l/C2 ) q(

For each bias voltage the depletion layer width is given by x = c/C(Vf).

The barrier voltage, however, can no longer be determined simply by

extrapolation of the high reverse bias slope.

One approach to the incorporation of the effects of interface

states into the junction capacitance relationships is to consider the

case of an intermediate layer of a different donor density than the bulk

of the n-type material. If its width is w. and its donor density is N.
11

we obtain

2 2 2
wd  -- = wi  (1 - Ni/ND) + 2_ (Vb _ Vf)

for NA >> ND Ni. The value of ND is still given by Eq. (2-2) for

wd w. but the extrapolated barrier voltage V* is now

V = Vb + (N - Ni) w.2
V=b 2e D i

For N. = 0, this reduces to the expression obtained by Bethe for the
1

p-i-n diode.

A more complete description of the capacitance of a heterojunction

with interface states and dipoles which includes the dependence on the

frequency of the ac test signal is given by Donnelly and Milnes93

2 (ElN Al +E2ND2i 2

1/q2  c qEl 2NAN 2  J (Vb - Vf - - BQis (2-3)
1/C2

1 + f(V) Q 1 d
+ 1 + ) d2 )

1 + (WT Q) 2 d 1 + (WT 6)2d
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with

B = [2q(clNA + 2ND2)]

where QIS is the surface density of interface states, 6 is the magnitude

of the interface dipole, TQ and T6 are the relaxation time constants for

QIS and 6, dQis/dV is the contribution to C due to the differential

change in interface charge, d6/dV is the differential change in the di-

pole, and f(V) is a factor depending on the magnitude and sign of dQis/dV.

Since trapping times related to the photocapacitance effect are

long we can neglect the dynamic term. The 1/C = 0 intercept is now

given by

2
V* = V - 6 - BQi Sb i

and ND may be obtained from the slope of the curve as before. Lindquist

found some frequency dependence for the zero bias photocapacitance

in heat-treated Cu2S-CdS cells for f < 103 Hz but only a small (10%)

22change from 105 to 106 Hz and concluded that the test frequency used

for 1/C versus V curves (1 MHz) the trapped charge was not responding

to the test signal in a dynamic manner.

In summary, the effect of interface state charging is to change

the intercept voltage of the 1/C versus V curve without changing its

slope. Although an estimate of the total interface charge can be ob-

tained, additional input is required to discriminate between dipoles and

a surface or volume charge layer and to determine the thickness of such

a layer.
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2.4 Photochemical Reactions

The term photochemical reaction (PCR) has been given to certain

slow changes in the electronic properties of crystals induced by exposure

to light while the crystal is held above some threshold temperature.

The changes are irreversible until the crystal is heated above another

characteristic temperature.

The concept of PCR appears to have originated as an explanation

for changes in the optical transmission spectrum of alkali halide crys-

tals on exposure to light. The effect was attributed to the optically

assisted agglomeration of certain crystal defects forming electron trap-

ping centers. (F centers): An electron optically removed from one F

center is trapped at another F center thus producing two oppositely

charged F centers. To bring together the defects required a diffusion

step which accounted for the necessity of a threshold temperature for

the "optical" process. Since the diffusion distances are of the order

0

of 10 to 100 A, however, the temperatures can be quite low. Annealing

at a higher temperature dispersed the defects and destroyed the agglome-

rate. PCR effects have been investigated extensively in the alkali

halides and the above model has been confirmed in KC1 (Compton and Rabin

66 107
in 19646, also see Van Doorn ).

*
It is interesting to note that the essential characteristics of PCR are
quite similar to those involved with the phenomena of photocrystalliza-
tion in amorphous Se (p-type) observed by Dresner and Stringfellow8 5.
In that process bonds in the chains of amorphous Se are broken by the
absorption of light. Holes are trapped which then accelerate the growth
of crystallites due to an electric field at the crystalline-amorphous
boundary. Since the growth rate under illumination increases rapidly
with temperature (following an exp{-AE/kT} law), a characteristic tem-
perature can be defined analogous to Tp below which photoexcitation is
no longer able to assist in the agglomeration of chain fragments to form
a crystallite. In this case the agglomerates are macroscopic and the
melting point corresponds to the annealing temperature (or TSC peak) of
the PCR.
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Apparently the first suggestion of a type of PCR in CdS crystals

was as an explanation for slow decreases of photoconductivity at constant

light intensity observed by Boer, Borchardt, and Borchardt6 7 in 1954.

68
Woods ,in 1958, again used the PCR to explain certain changes in the

thermally-stimulated-current (TSC) curves in CdS due to illumination at

various temperatures. PCR in alkali halides may, of course, be a basi-

cally different phenomenon than PCR in CdS. These have been two differ-

ent ways of observing PCR.

In the study of TSC curves the usual procedure is to anneal the

crystal at a higher temperature TA and then cool it with illumination

present below some temperature, TI < TA' to a low temperature (usually

77°K). On subsequent heating at a constant rate in the dark a complex

set of characteristic peaks in the conductivity versus temperature (TSC)

curve appear. As TI is decreased toward some threshold temperature T ,

some of the TSC peaks disappear--those not associated with traps that

are formed by PCR between TI and T .
P

In the study of the decrease of photoconductivity under constant

illumination, the crystal is annealed at a higher temperature TA, cooled

in the dark to TI (now in a sensitive state) and held there while being

exposed to light. The photoconductivity slowly decreases to a minimum

corresponding to an insensitive state providing that TI is above the

threshold temperature, T . Thus the TSC method examines the creation of

traps by PCR while the photoconductivity decrease method deals with the

effect of PCR on the recombination centers affecting the photoconductivity

lifetime. Whether the same, related, or different defects are involved

in these two kinds of effects is not unambiguously known.
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Additional investigations of the photoconductivity decrease effect

in CdS have been carried out by Boer 70 who showed that the decrease in

photoconductivity was due to a decrease in carrier density (i.e., car-

rier lifetime). Borchardt7 1 '7 2 , using a variety of impurities, found a

range of T from %240°K for undoped material to 1'400°K for Cu doping.
p

He ascribed the decrease of photoconductivity to optically assisted

thermal diffusion of sulfur vacancies and the effect of the centers thus

created on recombination kinetics in the crystal. In 1961, Albers73

attributed the effect to sulfur vacancies diffusing from the surface into

the bulk of the crystal (a concept later contested by Tscholl).

Most recent work on PCR in CdS has been done using the conductivity

decay method. Bube in 195776 and 195977 and Bube and Barton 8 (1959)

observed similar effects but attempted to find an alternative to the PCR

79interpretation. Nicholas and Woods (1964), in an excellent survey,

discussed six trapping levels in CdS prepared with excess sulfur with

depths ranging from 0.05 to 0.83 eV using other work as well as their

own. Only the 0.83 eV level (with TSC peak at 290°K) was associated with

the PCR and this was discussed more fully in another paper by the same

80 81
authors80 . Korsunskaya et al.8 1 also studied PCR in CdS with excess S

which is particularly interesting because the PCR produced an increase

in photoconductivity (due to new sensitizing centers) rather than a de-

crease as seen by other workers.

Bube et al. 2 in 1966 found a trapping level at 0.73 eV in CdS-

CdSe which obeyed monomolecular kinetics and could only be filled at

T ~ %180°K. Rather than a PCR explanation, they initially proposed that

*
The values of T found by Borchardt are much higher than those found
in this work (I00°K for Cu doping).
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the trap was surrounded by a coulomb repulsive barrier. In 1970, Im, et

84
al. (1970) using CdS with excess S measured the wavelength dependence

of trap filling for the equivalent trap and found that it could not be

explained by the coulomb repulsive model.

83
Cowell and Woods in 1969 identified two traps in CdS:S with

depths of 0.63 eV (with a TSC peak at 310 to 320°K) and 0.85 eV (TSC

peak, %280°K) with a PCR effect and found T = 185°K and 245°K respec-
P

tively. They suggested that the traps were an aggregate of Cd vacancies.

69
Tscholl in 1968 presented an excellent paper 9 in which he surveys

earlier work and presents a model based on the photo-agglomeration of

crystal defects. According to this model T is controlled by the dif-
P

fusion of the defects. He suggests that a single set of defects is

responsible for the whole group of traps seen above 100°K, their energy

being varied by the distances between the defects in the crystal.

Tscholl's experiments done with CdS:Cu include the effects of additions

of isovalent Ni. He argues against the repulsive barrier theory of

82
Bube, et al. (which requires a double acceptor). Although Tscholl was

mainly concerned with general changes in a total TSC curve, we can find

a TSC peak at 350°K with a T between 230 and 270°K in his data for a
P

^Q19 3
CdS:Cu sample with a Cu concentration of 10 /cm . Tscholl notes that

in what he calls a condition of "good compensation" (i.e. the majority

of the recombination centers occupied by electrons in the dark) the fil-

ling of the traps formed by PCR is accompanied by an increase in the

density of vacant recombination centers and hence a decrease in photocon-

ductivity lifetime.

74
Most recently, Kanev, et al.74 in 1969 observed a photoconductivity

decrease in highly Cu doped CdS crystals and suggested a model in which
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certain slow recombination centers are converted (by the irreversible

loss of an electron to a peculiar trap) to faster recombination centers

by the action of light. He found Tp 220°K and that the effect began
P

with a Cu concentration of '4 x 10 18/cm and increased in magnitude with

higher doping levels. Kanev, Fahrenbruch, and Bube 7 5 in 1971 found that

similar effects exist in heat treated Cu2S-CdS photovoltaic cells and

have a large effect on their output.
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Chapter 3

EXPERIMENTAL METHODS

3.1 Preparation of Samples

All experiments were performed on samples cut from the same CdS

crystal boule grown in the Stanford Center for Materials Research Labora-

100
tories . Using resublimed 99.999% pure starting material the crystal

was grown by vapor transport in an evacuated quartz ampoule employing a

101
method described by Piper and Polich1  . The crystal had a donor density

(probably due to excess Cd) of about 0.4 x 1016/cm 3 as determined from

four point conductivity measurements (assuming an electron mobility of

400 cm /volt sec). The boule was optically clear and free of visible

imperfections. Laue back reflection photographs used to align the boule

showed it to be a single crystal.

3
The CdS crystal was diced into samples about 4 x 2 x 1.5 mm3 with

the c-axis normal to the large faces. A short etch in dilute HC1 was

used to identify the crystallographic polarity (on etching the b-face

becomes diffusely reflecting). Ohmic contacts of pure In were applied

by pressure to both end faces and the samples were annealed in H2 at

200-250°C for several minutes. The large faces were then optically

polished using y alumina (0.03p) as the last polishing agent.

After cleaning in boiling TCE, acetone, deionized H20 and finally

methanol the samples were mounted on glass slides and masked to expose

only one surface using Lacomit (T. M., an excellent maskant manufactured

a-face (Cd, (0001)); b-face (S (0001)).a-face (Cd, (0001)); b-face (S. (0001)).
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by W. Canning and Co. Ltd., Birmingham 18, England). Generally the

samples were etched (if required), rinsed, and stored in H20 until

dipping.

The epitaxial Cu2S layer was formed by an exchange reaction at

75°C in an aqueous solution of Cu+ ions according to the reaction

CdS + 2Cu +- Cu2S + Cd++  F°(298°K) = -29.6 kcal/mole.2

The reaction rate is discussed in Section 4.1.

The dipping reaction was carried out in a temperature controlled

"fresin reaction flask" shown in Fig. 3-1. Pure argon flowing through a

porous glass bubbler during the dipping provided an inert atmosphere

and stirred the solution. The H20 was previously boiled in the flask for

20 minutes with Ar flowing to eliminate dissolved oxygen after which

19.8 g/l of CuCl, 37.3 g/l of KCl, and 13.9 g/l of hydroxylamine hydro-

chloride were added without appreciably disturbing the Ar blanket.

A small amount of HC1 was added until a pH of %3 was obtained. The

solution was clear and colorless and the undissolved CuCl was grey-white.

After the reaction proceeded for the allotted time (usually 430 min) the

samples were withdrawn quickly, rinsed in H20, polished with soft tis-

sue to remove clinging CuCl, and demounted in acetone. The solution was

colorless at the end of the dipping reaction except longer dipping times

when it appeared slightly blue-green.

Several other maskants were tried (including black wax) but they pro-
duced an invisible film across the crystal surface which inhibited film
nucleation for short dipping times.

Hydroxylamine hydrochloride (NH20H HC1) reacts with any Cu+ + ions pre-
sent according to NH30H + Cu+ + + 1/2 N2 + Cu+ + H20 to prevent oxidation
of the Cu+ to Cu++ during the dipping reaction.
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FIG. 3-1. Reaction vessel for dip forming Cu2S layer.
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To determine the Cu2S film thickness the samples were mounted on

their sides in glycol phthalate (m.p. 70 to 120°C), ground and polished

and measured with a metallurgical microscope to %0.5U. Thus these cells

have been heat-treated for several minutes at temperatures not over

,
120-130°C. Finally the Cu2S was contacted with Ga-In alloy and the

electrical properties of the cells were measured.

Several cells were made in the usual manner described above with

special care to avoid any heat-treatment above the dipping temperature

of 75°C during preparation. The resulting cells were very uniform and

had a high short-circuit current density J and open-circuit voltage
sc

V :
oc

J = 12 mA/cm at 280 mW/cm , white tungsten light
SC

J = 5 mA/cm 2
sc in normal sunlight

V = 0.43 V
oc

Except for a somewhat higher J ,c these cells were identical with those

having undergone the 120°C heat treatment.

Several homogeneously Cu doped single crystal photoconductors were

made from the same CdS boule as the above cells. After polishing the

4 x 2 x 1.5 mm3 CdS samples a layer of Cu sufficient to give the required

doping level was evaporated on two opposite surfaces. The crystals were

then annealed at %730°C in a sealed quartz ampoule containing about 1/2

atmosphere of H2 for 26 hours. This rather severe anneal resulted in

vapor transport of about 10% of the volume of the crystal to the ends of

the ampoule but gave homogeneous doping. The crystals were noticably

Ga-In alloy was used rather than Cu or Ag paint contacts because of the
slower diffusion rate of the former elements.
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darkened by the Cu doping but were still transparent. They were then

polished on all sides and ohmic contacts of In-Ga alloy applied as in

previous work. Sample #94 with an estimated Cu concentration of

5 x 1017/cm3 and a dark conductivity of less than 10-10 /Qcm was used for

the experiments reported here.

The samples used in the work reported in this thesis are listed

below:

Sample # Type Cu2S Thickness, p Area, mm

36 b-face cell 9 "4

61 a-face cell 10 3.51

62 a-face cell 10 3.57

81 a-face cell 12 4.07

89 a-face cell 410 4

94 CdS:Cu photo- (length "4 mm, cross sectional area "1 mm2)

conductor

3.2 Apparatus

For electrical measurements the experimental apparatus shown in

Fig. 3-2 was used for both the cells and the photoconducting crystal.

This apparatus provided a vacuum, H2, or air environment over a tempera-

ture range of 90°K to 600°K, with primary and secondary photoexcitation

sources. All measurements were made in situ and thus sample transfer in

the light was eliminated. The two light beams were directed at the

sample at the bottom of an evacuable chamber immersed in liquid N2. A

bifilar chromel winding on a copper sample holder mounting supplied heat

and a brass thermal resistance was connected to the base which was in

thermal contact with the liquid N2.  This system was capable of a cooling

time of 20-25 sec from 200°C to 60°C. Because of the exponential
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dependence of the restoration process on l/T, this actual cooling rate

corresponds to only about 2 to 4 sec of effective changes in cell

properties.

The thermocouple was mounted in a well drilled directly into the

aluminum sample holder block which surrounded the sample on three sides

to insure thermal equilibrium (a fourth side of the sample was adjacent

to the copper mounting). Thermal contact with the mounting block was

maintained with a thin layer of a high thermal conductivity silicone

compound. The cells were mounted so as to receive backwall illumination

(through the CdS).

A Bausch and Lomb 500 mm grating monochromator with tungsten rib-

bon source was used as a primary (wavelength sweeping) light source and

another Bausch and Lomb 250 mm grating monochromator provided the secon-

dary (or bias) light. Both were filtered when appropriate with Corning

2-64 and 7-56 filters to eliminate the higher order spectra. The energy

flux was measured at the sample location with a Perkin-Elmer thermopile.

Electrical connections using a shielded two lead system connected

to ground only at the current meter permitted very low level measurements

-10
(<10 A). The current measurements were made using a Hewlett-Packard

425A microvoltmeter connected across precision resistors such that the

maximum voltage drop was either 1 mV or 0.1 mV. Voltage measurements

were made on a Keithley 610A electrometer with an input resistance 1014

ohms. Meter outputs were connected to an X-Y recorder. The electrical

system is shown in Fig. 3-3.

Junction capacitance measurements were made on a 1 MHz Boonton 75D

capacitance bridge with a 1000x range extender. The signal level was ad-

justed to 420 mV. Series resistance corrections were made using resistance
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values determined from pulsed forward-bias current measurements for

biases up to 10 volts (pulse length 10 .sec at a repetition rate of

%20/sec).
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Chapter 4

EXPERIMENTAL RESULTS

"NeveA does naturte ay one thing and wisdom anotheA" - Juvenal

The results section is divided into three parts in order to put

the data into better perspective:

4.1 A discussion of Cu2S layer growth on CdS single crystals,

the effect of pre-etching the CdS on cell properties, and

of the diffusion of Cu into CdS.

4.2 The thermally restorable optical degradation effect in cells

and CdS:Cd:Cu photoconducting crystals.

4.3 Junction properties, where the detailed characteristics of

individual states of the cell and the photoconductor are

investigated to provide a knowledge of the actual structure

of the junction and its influence on cell output.

Because of the frequent use of the following terms, their acronyms

are used: HT, for heat treatment; BHT and AHT, for before and after HT;

and TROD, for thermally restorable optical degradation (either the total

effect or the degradation aspect in particular).

4.1 Junction Formation

4.1.1 Growth of the Cu2S Layer

The topotaxial formation of the Cu2S film on oriented single crys-

tals of CdS by dipping appears to be a reaction-rate limited process.

Furthermore, under the conditions of small thicknesses and low tempera-

tures, the progress of the reaction is strongly affected by difficulty

in nucleation.
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Generally, the nucleation rate is proportional to exp(-AG/kT),

where AG, the free energy change, contains two terms, one less than zero

dependent on the bulk or volume change in free energy, and the other,

usually greater than zero, which is dependent on the surface energies

involved. The surface energy term depends on the preparation of the

substrate and it is decreased considerably at scratches induced by

polishing, etch pits, and other surface defects. After nucleation, a

transformed portion of the CdS tends to become larger (smaller) if it is

greater (smaller) than a critical size such that the bulk energy changes

begin to dominate the effect of surface energy changes.

Evidence for this nucleation difficulty comes from the observation

of nucleation only on polishing scratches but no where else for short

dipping times. The nucleation for the a-face is more difficult than for

the b-face. Occasionally the b-face thickness of Cu2S will exceed that2

of the b-face on the same sample (dipped simultaneously), even though

after nucleation the a-face growth rate is 3 times the b-face rate.

Examination of cells with noncontinuous Cu2S layers reveals evi-

dence of antinucleation behavior in regions of crystal damage due to

polishing scratches. In some cases the scratch itself was polished

away leaving a track of damaged material. Although these damaged regions

were invisible at 400x in reflected light, a track about 8p wide failed

to nucleate by the time the rest of the film was 2-3i thick. Examination

of a visible scratch showed that sufficient polishing damage was present

to prevent nucleation up to about 5p from the scratch edge. Nucleation

occurred in the scratch mark itself however. The radius of antinuclea-

tion is consistent with the radius to which the dislocation density is
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appreciably increased by surface scratches as observed by other workers.

This result is surprising since the increased number of dislocations

present near the scratch should strongly aid nucleation.

After nucleation is accomplished the layers grow at a constant

rate as shown in Fig. 4-1. Extrapolation of these curves fits the data

of Lindquist 7 quite well showing a growth rate linear in time up to a

layer thickness of over 200p with the a-face rate being 3 times that of

the b-face.

4.1.2 CdS Substrate Etching and Surface Roughness Effects

The results of an investigation of the dependence of cell proper-

ties on the pre-dipping surface treatments given to the CdS single crystal

86
substrates are summarized briefly here . It should be pointed out here

that there is a definite dependence of cell properties on the thickness of

the Cu2S layer, presumably resulting from the lattice mismatch between

17
Cu2S and CdS, as found by Lindquist .

Surface treatment effects may be conveniently separated into (1)

geometrical effects depending on the interface shape and texture, and

(2) chemical effects arising from the introduction of impurities and

defects into the materials forming the junction.

The geometrical quality of the interface can be altered by polish-

ing, etching, or other chemical action during substrate preparation and

dipping. The resulting interfacial effects include:

(a) a change in the light absorption coefficient due to multiple

reflections

(b) exposure of crystal planes other than c faces to film forma-

tion (which may have different electrical properties)
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(c) the effect on lattice mismatch strain at the interface

(d) the presence of residual polishing strain fields

(e) changes in the grain size and defect density of the Cu2S

layer.

For example, b-face cell interfaces are generally much smoother and the

film thicknesses more regular than are those of a-face cells. A typical

interface profile is shown in Fig. 4-2. Macroscopic surface roughness

of the CdS substrate is retained at the outside (Cu2S-dip) surface as

the CdS is transformed, while the Cu2S-CdS interface profile is altered

during its travel into the crystal by growth processes. In particular,

the cracking or channeling behavior of the Cu2S gives rise to a

o~-t

FIG. 4-2. Scanning electron microscope photograph of Cu2S-CdS cell at
2000x. Cu2S (about 10p thick) appears as dark band (SEM

photograph by Loren Anderson).
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characteristic scalloped interface. This may result from either or

both of the following effects: (1) the channeling aids movement of the

Cu ions from the dipping solution to the interface and (2) the maxima

of the interfacial stress field are centered around the intersection of

these cracks with the Cu2S-CdS interface. The latter reason is favored

since growth rate is controlled to rather large thicknesses (>100p) by

the choice of a or b face (the a-face growth rate being '\3 times the b

rate), thus implying that growth is controlled at the interface rather

than by transport through the bulk of the Cu2S. This is also implied by

the linear dependence of layer thickness on time shown in Fig. 4-1.

Chemical influences include:

(a) the introduction of foreign defects by the halogen impurities

remaining from the etching step

(b) changes in stoichiometry of the Cu2S due to interfacial stress,

the choice of a or b face, or the presence of Cu+ + ions in the

dipping solution

(c) residual Cu or Cd+ + concentrations in the layer when the cell

is removed from the dipping bath.

It is expected that the first of these effects would be greater for thin-

ner Cu2S layers. Since the dipping reaction takes place in a C1 ion

environment, the chemical role of an HC1 etch should be small unless

chemisorption of the C1 ion is increased by the etching step.

Fourteen cells with "10P Cu2S thickness and three cells with %2 p

thicknesses were prepared. By keeping the thickness of the layer the

same between samples, we eliminated variables such as lattice mismatch

strain and change of interface profile during growth. The pre-dipping

surface treatments used included mechanical roughening of the surface,
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and etching with HC1, HBr and HI. Measurements were made at room

temperature and included J and V in white light, dark I-V curves,
SC OC

spectral response of JSC and V oc, zero-bias capacitance and optical
SC oc

transmission of the 2i cells.

All of these cells received a short heat treatment (1 to 2 min at

100°C to 130°C) during embedding forthe polishing necessary to measure

the Cu2S layer thickness. It is thought that this HT does not affect

the validity of the results which follow.

The results show that any differences in cell properties with

variation in etching and mechanical polishing preparation of the substrate

are a relatively subtle effect, comparable to statistical variations in

cell behavior of uncontrolled origin. The fact that nonetched samples

tended to have comparable electrical properties, suggests that any etch-

ing differences that are observed are the result of differences in the

geometrical profile of the interface and in film thickness caused by the

use of these etchants rather than any chemical effect.

Differences were detected between a and b face cells however.

These include:

(1) b-face samples have the highest V c and usually have the
oc

largest J
SC

(2) dark reverse bias current is smaller by a factor of 10 for

the a-face cells (at -5 volts)

(3) in general the a-face cell of an etchant pair had higher

values of the factor a in the diode relation Jf = J

(exp aV - 1) than its b-face counterpart, while the values

of J were lower. (All cells showed a break in the Jf - Vf
of
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curve at 0.2 to 0.4 volts so there were two a's and two J 's
o

involved in this comparison for each cell.)

4.1.3 Cu Diffusion into CdS

It is well founded that the increase of depletion layer width on

HT of Cu2S-CdS cells is due to the diffusion of Cu and the resulting

compensation of donors in the CdS. Many workers have studied the dif-

fusion of Cu into CdS1 5 '2 2'2 7'8 7 (both from Cu films and from Cu2S

layers) and have found diffusion coefficients differing by as much as a

factor of 100. Of these, Sullivan's work2 7 using a compensated i-layer

capacitance method seems most complete and reliable as well as giving

the lowest value of diffusion coefficient.

Normally the width of the zero bias depletion layer, Wd, exceeds

the width of the compensated, nearly intrinsic layer, wi.  Their differ-

ence becomes relatively smaller with increasing wi (as is discussed

further in Section 4.3.8) and wd becomes a good approximation to w. for
1

values of >0.5 pm in these cells.

If we assume a diffusion model in which the surface concentration

of Cu, [Cu]o0, is held constant by the solubility of Cu in CdS then

[Cu] (x,t)= [Cu] {1 - erf[x/2(Dt)/ 2]} (4.1)

and, for constant values of concentration, x plotted against t1 / 2 should

have a slope proportional to the square root of the diffusion constant,

D. As complete compensation of the CdS donors is approached, the con-

ductivity decreases very rapidly and the value of x for which the Cu

concentration approximately equals ND can be identified with wd = wi.

Data for the HT of a cell is shown in Fig. 4-3 where wd from capacitance
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measurements is plotted against the square root of the time of HT.

Using a solubility of 3 x 1017 /cm at 200°C from Sullivan2 7 and a donor

density in the CdS of 4 x 10 15/cm (from 1/C versus V measurements) we

can calculate a value for D. These data indicate rapid diffusion up to

'1lP with D = 120 x 10- 1 3 cm /sec which then slows to a constant value of

4.6 x 10 1 3 cm /sec for greater diffusion depths (in good agreement with

1-13 2D = 1.3 x 103 cm /sec at 200°C from ref. 25). These data suggest that

diffusion is more rapid initially because of the effects of the rough

interface (typically 0.5p peak to valley in these cells) and due to the

presence of dislocations due to interface strain. The variation of

capacitance as the actual interface area decreases toward the geometrical

(projected) area during HT predicts that the curve of Fig. 4-3 should be

concave upward. However, the variation of effective diffusion rate with

interface roughness would have the opposite effect and contribute to the

decrease of the diffusion constant as seen in Fig. 4-3. This is particu-

larly true in view of Sullivan's data showing a diffusion rate in the di-

rection I to the c axis about 30 times faster than that in the direction

| to the c axis.

Also shown in Fig. 4-3 for comparison is a slope calculated from

Sullivan's value of D using the donor and Cu surface concentrations as

17
above. Two points from Lindquist's work 7 are shown as well.

The value of wd actually changes as the state of optical degradation
and/or enhancement of the cell is changed (this is discussed in Section
4.3.8). We presume that the diffusion data from capacitance measure-
ments given in the literature for the Cu-CdS system is for the optically
degraded and quenched state since this is the normal, equilibrium state
at room temperature after exposure to room light for some time. Thus
the data presented here is for the degraded, quenched state as well. The
cell was HT at 200°C, then cooled to 300°K and degraded before capaci-
tance measurements were made. Diffusion is parallel to the c axis in
the CdS.
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4.2 Thermally-Restorable Optical Degradation

In this section we describe the phenomena involved in thermally-

restorable optical degradation (the TROD effect) and show the similari-

ties between its effects in Cu2S-CdS photovoltaic cells and those in

CdS:Cd:Cu photoconducting crystals. These slow transients have been

called photochemical reactions (PCR) because of their low rate and quasi-

irreversible nature6 9'7 1'7 2' 73'74'8 4 . Optical degradation leads irrever-

sibly to a degraded state (D state) which is stable until the device is

thermally restored to its other stable state (R state). These states

are independent of the enhancement and quenching effects observed in

such samples in that both the R and D states are subject to enhancement

and quenching. We discuss here the time and temperature dependence and

the dependence on wavelength of the degrading radiation for optical

degradation as well as the temperature dependence of restoration.

4.2.1 Time Dependence of Optical Degradation

When a cell (or photoconductor) is exposed to light of suitable

wavelength for optical degradation, the short-circuit current (or photo-

current) rises quickly to a peak (called here the TROD maximum) and then

falls slowly. The current plotted against time, called a TROD curve is

shown schematically in Fig. 4-4(a).

The falling portions of the TROD curves shown in Fig. 4-4(b) show

strikingly similar decay forms for both the cell and the photoconductor.

A phenomenological equation derived in terms of a recombination

model (see Section 5.5) gives an excellent fit for the cell over a wide

range of conditions including degradation with white light at 300°K and
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(a) Schematic TROD curve. (b) Short-circuit current and
photocurrent versus time during optical degradation. The
wavelength of the degrading light is noted on each curve and
the time scales are as follows:

Cell #89 white light 200 sec/division
Cell #81 0.65p 4000 sec/division
Photoconductor 0.65p 4000 sec/division
Cell #81 0.535p 100 sec/division

All curves are at 300°K except as noted and the fully degraded
values of current are shown at right for two of the curves.
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degradation with monochromatic light at 200°K (with variation of para-

meters of course):

I = I exp {-A [1 - exp(-6(T)t)]} (4.2)
sc m

where I is the maximum current, A is a constant, 6(T) is the rate ofm

degradation at temperature T, and t is the time. The factor in the

square brackets is proportional to the number of recombination centers

activated by the optical degradation process.

The first part of the cell data are expected to lie below the curve

because of the equilibration of enhancement when the light is turned on;

the current rises rapidly to a maximum within 50 sec (called the TROD

maximum). The photoconductor curve appears to be of the same nature

(i.e., a decay curve when plotted on a semilog graph) but does not fit

the above equation well. The curve through the cell data points is

plotted from the phenomenological equation while the photoconductor

curve is merely drawn as a best fit to the points.

4.2.2 Temperature Dependence of Optical Degradation

Since optical degradation occurs only above temperatures of 200 to

250°K we conclude that it is both thermally and optically activated.

The dependence of the rate of degradation on temperature was measured in

terms of the current excited by a low intensity "probe" light. The

degree of degradation must be probed at a single temperature since the

degree of enhancement varies with temperature. To eliminate the possi-

bility of degradation during probing and to make use of the largest

The "220°K" curve is degraded at 200°K but it is measured in terms of
short-circuit current excited with 0.70p light in the quenched state
at 150°K (see Section 4.3.4).
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possible variation in current from restored to degraded state, the sam-

ples were probed at 150°K. It is also necessary to standarize the degree

of enhancement in some way. For the cell, the maximally quenched situa-

tion was chosen as a standard state. This situation is produced by the

simultaneous use of quenching light and reverse bias, as demonstrated

17by Lindquist . The measurement was made in the same manner as the

"transient" measurements discussed in Section 4.3.4. For the photocon-

ductor, the equilibrium degree of quenching under 0.65p illumination was

chosen as a standard state.

Thus the degradation of the cell and the photoconductor were mea-

sured using the following procedure:

(1) The sample was completely restored.

(2) The sample was cooled to 150°K and:

(a) after the cell had been quenched with 0.95p light and

5.0V reverse bias, the initial response to a 0.65V probe

light (11 pw/cm ) was measured or,

(b) the stable response of the photoconductor to 0.65p light

was measured.

(3) The sample was degraded with 0.535p light of constant intensity

at a temperature, T, for 25 sec.

(4) The sample was cooled to 150°K and step 2 repeated.

(5) The sample was again restored and the above steps repeated

for a different temperature.

The results are shown in Fig. 4-5 where the data are analyzed in

*
terms of an exponential curve:

For small degradation times this equation is a good approximation to
Eq. (4.2).
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I = I exp (-6t)
m

where 6 = 6 exp (-AE/kT),
0

I = maximum cell current (restored),
m

6 = thermally activated degradation rate (6o includes the

photon flux of the degrading light as a factor).

A plot of log10 loge(I /I) yields an activation energy for the process

of 0.44 eV for the cell and 0.40 eV for the photoconductor. Another

method of analysis is to take equivalent degradation times from a plot

of current versus time during degradation (such as Fig. 4-4) taken at a

median temperature in the range being considered. These times are di-

rectly proportional to the rate of degradation for any form of decay law

in which 6t appears as a product. This procedure yields the same activa-

tion energies as the model above.

For the cell optical degradation begins at \200°K and is virtually

complete at \230°K for a 25 sec exposure to 0.535H light of \300 pw/cm2

intensity. Under the same conditions degradation in the photoconductor

begins at %250°K and is virtually complete at %330'K.

The similarity between the cell and the photoconductor is clear

and the offset in temperature can be attributed to a difference in rate

constant, 60, such that the rate for the cell is greater by a factor of

160.

4.2.3 Wavelength Dependence of Optical Degradation

The relative effectiveness of various wavelengths of light for

optical degradation was studied at room temperature by the following

procedure:
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Optical degradation versus reciprocal temperature for cell #81
and the photoconductor #94 relative to the fully restored
state. The degree of restoration is probed with 0.65p light
at 150°K (probe current is I with fully restored value I ).
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(1) Probe with weak, white light until the short-circuit current

reaches an equilibrium to get I
0

(2) Degrade with monochromatic light for 25 sec.

(3) Repeat (1) to get I1 and go on to the next wavelength in

step 2.

We assume the approximation of simple exponential decay for the degrada-

tion curve that was used in Section 4.2.2 so that Ln I1/I is propor-

tional to Dt. This measurement was carried out over a single degradation

cycle using the longer wavelengths first (i.e., the cell was not restored

between degradations). The total amount of degradation was limited to

decreasing the photocurrent by a factor of 13 to make the above approxi-

mation reasonable. We further assume that the degradation rate, D, is

proportional to the photon flux in order to normalize the result with

respect to photon flux at each wavelength. Then the effectiveness, nd,

of optical degradation should be proportional to

1
Ft In (1/ ) (4.3)

at each wavelength, where F is the photon flux, and t is the time of

exposure. nd may be proportional to the cross section for the optical

transition involved in the degradation mechanism.

nd was also calculated on the basis of equivalent degradation

times using a white light degradation versus time curve as in Fig. 4-4.

The results of both methods of calculation are shown in Fig. 4-6 where

nd is arbitrarily fixed at 1 for 0.535p light.

* 74
Experiments by Kanev, et al. indicate that the degradation rate is
proportional to photon flux.
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respect to photon flux (8x1014 photons/sec cm2 at 0.535p).
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This measurement is reported as an estimate for nd and should be

considered only as an approximation to the true wavelength dependence,

which should be measured with equal photon fluxes for each wavelength,

and complete restoration between the degradations at each wavelength.

4.2.4 Temperature Dependence of Thermal Restoration

To measure the temperature dependence of the restoration effect, a

cell with extensive previous HT was selected (cell #89 with over 100

minutes of HT).

Measurements were made as follows:

(1) Full degradation of the cell in white light.

(2) Measurement of cell short circuit current under a constant

white light of about 14,000 Vw/cm . (X800 pw/cm for the

photoconductor.)

(3) HT at temperature, T, for 1 min.

(4) Equilibration to room temperature.

(5) Measurement of the TROD curve maximum, I, when exposed to

the constant white light.

The current maximum, I, at each temperature relative to the fully res-

tored value, Im, is plotted again 1/T°K in Fig. 4-7 (solid curves).

The value of the activation energy determined from the above data

is dependent on the model used to describe the restoration effect. Thus

we cannot expect to simply plot ln I versus 1/T and obtain an activation

*
Early in the previous treatments of this cell, a thin film of Cu had
been evaporated on the Cu2S to provide a better contact; after some
90 min of HT the Cu had completely diffused into the Cu2S. The result-
ing cell showed stable optical degradation, restoration, and photo-
capacitive behavior like other cells with less HT and without the Cu
film.
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state. Degree of restoration is probed by TROD curve maximum,
I, at 300°K using white light (fully restored current I ).
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energy truly descriptive of the process. The choice of such a model is

not obvious. However, we present here a model chosen for its simplicity:

I = I [1 - exp(-Rt)]
m

where I is the fully restored value of maximum current, and R = Rm o

exp(-AE/kT) is the thermally activated restoration rate. A plot of

log1 0 {loge[I /(I - I)]} versus 1/T yields an activation energy of

1.64 eV for both the cell and the photoconductor (dashed curves of

Fig. 4-7). This is to be compared with an activation energy of 1.95 eV

obtained from the plots of I versus 1/T (solid curves).

Despite the difficulty with the choice of model, Fig. 4-7 shows

the similarity between the cell and the photoconductor. The displace-

ment along the 1/T axis can be attributed to a difference in rate

constant, R , such that the rate for the cell is greater by a factor of
0

270. Thus both the rates of degradation and restoration for the cell

exceed those of the photoconductor by about two orders of magnitude.

Since both the completely restored and completely degraded values

of current remained nearly constant despite more than 35 restorations

during this experiment, the independence of the TROD effect and changes

in the Cu concentration profile due to diffusion during the restoration

is clearly shown. For the temperatures encountered in restoration the

rate of Cu diffusion (in a cell with long HT) is so slow that it causes

no appreciable changes in cell properties during restoration.
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4.3 Junction Properties of the Heat Treated Cell

4.3.1 Relationships of the R, D, E, and Q States

Both the enhanced (E) and quenched (Q) states exist in either the

restored (R) or the optically degraded (D) condition of the cell. The

same is true for the photoconductor. In the cell, the resulting four

states are stable and reproducible at low temperatures and metastable at

room temperature, where the E state decays to Q thermally and the R

state decays to D optically.

Intermediate states also exist and thus the specification of the

state of a cell requires that both the degree of degradation and the

degree of quenching be known. Such a state is apparently unique and all

states lying on the plane bounded by the points DQ, RE, DE, and DQ are

attainable.

The relationship of these states is shown in Fig. 4-8, a symbolic

plot of short-circuit current, IS, for 0.70p light versus the degree of

degradation of the cell. The current values for each state were obtained

from the spectral response curves given in the next section. The extent

of degradation is a qualitative parameter whose meaning is unambiguously

defined only at the end points. Thus we can only say that a sample is

completely degraded orcompletely restored without resorting to some

definition for the intermediate points. Operationally, the extent of

degradation is measured in terms of the integrated flux of the degrading

light (starting from the restored state; as in Fig. 4-4 or Fig. 4-14) or

For example, if we select a hypothetical model in which optical degrada-
tion is caused by the conversion of a particular crystal defect, YR, to
another defect, YD, then an appropriate definition of the percent of
degradation in terms of the concentration of these defects would be
100 [YD]/([YD] + [YR])
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in terms of the time and temperature of restoration (starting from the

degraded state). Both of these measures are expected to be nonlinear.

The obvious result of degradation is a decrease in I . Thus the extent
sc

of degradation can be defined in terms of the decrease I itself.
sc

4.3.2 Effect of Heat Treatment on Short-Circuit Current

To study the decrease of short-circuit current with HT an "a" face

cell (#81) was chosen, with higher than average I, and a previous

history of only mild HT (100°-130°C) during fabrication. The cell was

mounted with a Ga-In alloy contact to the Cu2 S to reduce the effects of

diffusion from the contact that would occur with an Ag or Cu contact.

This cell was then heat treated for short times up to a cumulative total

of 125 min at 200°C. White light was used to determine the TROD curve

maximum (as in Fig. 4-4a) as well as the stable short-circuit current,

I c after degradation. A low intensity white "probe" light was used to

measure IS in the restored state to avoid optical degradation. Since
sc

both enhancing and quenching wavelengths are present in white light the

cell attains a degree of enhancement appropriate to its state of restora-

tion (more will be said of this in Sections 4.3.5 and 4.3.6). The junc-

tion capacitance was measured in the DQ state since this is the equilibrium

state at room temperature and thus these data are comparable with the

results of other workers. These data are presented in Fig. 4-9.

The current for the restored state reaches a stable value after a

short HT (X1 min) and remains relatively constant for further HT, even

though the capacitance and the degraded value of current continue to

decrease. Thus there is a large increase in the influence of the TROD

effect as heat treatment is continued.
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in the restored state.
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On turning on the probe light after heat treatment, the current

rises from a very small value (less than 10 10 amp) to its equilibrium

value with a rise time of about 5 min. This rise is attributed to the

slow attainment of the equilibrium degree of enhancement under weak

illumination.

The ratio of enhanced I to quenched IS in the degraded state
SC SC

increases rapidly with HT; from %3 before HT, to 50-200 after 6.25 min,

and finally to 10 after 60 min. This effect is discussed in greater

detail in Section 4.3.6.

4.3.3 Effect of HT on the Dark Current-Voltage Curves

The behavior of the dark I-V curves with heat treatment is quite

complex and there is considerable variance from cell to cell. An

example of the behavior is shown in Fig. 4-10 where log I versus forward

bias voltage in the DQ state at RT is plotted before HT (but after the

usual 1-2 min of 120°-130°C HT during fabrication), after 1-1/2 years of

storage in dry air at 300°K, and finally after 6.25 min of HT at 200°C

in air. The shelf storage has had the same effect as is seen for short

HT at about 100°C. Typically the low bias current rises with short HT

and then falls again for longer HT while the high bias (>0.4 volts) cur-

rent always falls with HT. The values of a for the diode relation

I = I [exp aV - 1] are also shown on the figure. Lindquist 1 7 observed
0

the same behavior.

In general the curves consist of 2 straight line segments with no

sign of resistive or V2 behavior until the current becomes limited by

the series resistance of the device (due to contacts and the bulk resis-

tance of the CdS and Cu2S--usually 80-250 ohms); this always occurs at a
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FIG. 4-10. Dark current-voltage curves for cell #61 at 300°K in the DQ
state. Values of a from the diode relation I = I (expaV -1)
are noted on the curves (a = 38.6/volt for a perfect Shockley
diode at 300°K).

73

10-3

i-4

(10

2 -(:6

z
LLI

IO-?

0

-8

19



voltage above V oc. The break point between the straight line portions
oc

of the curve usually occurs at 0.3-0.4 volts but may increase to 0.5

volts after HT.

4.3.4 Spectral Response of Short-Circuit Current

Cell Results

While the magnitude of the short-circuit current, ISC, of the cell

changes by as much as a factor of 10 between the various R, D, E, and Q

states, the relative spectral response changes very little.

The measurement of the spectral response is complicated by the

transient nature of the states involved. At 300°K the enhanced state

decays rapidly toward its equilibrium (Q) state. At 150°K the situation

is reversed and even a weak enhancing light quickly destroys the maxi-

mally quenched state. Thus we must take the measurement in such a

manner that both the decrease of enhancement and the effect of the probe

light itself may be accounted for. With these facts in mind we examine

several of the methods of obtaining spectral response curves:

(a) Transient: By observation of the transient response to a

weak probe light after enhancement or quenching we can obtain

the sensitivity in a constant state. This is illustrated in

Fig. 4-11. The cell is enhanced with 0.535p light until

equilibrium is reached, the light is turned off, and after a

small time delay the probe light at some wavelength, X, is

turned on. The current rises rapidly to a maximum and then

falls as the probe light quenches the cell in this case. By

extrapolation of the falling part of the curve back to the

time when the probe light was turned on, the enhanced state
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response is obtained for A. The procedure is repeated for

each wavelength. The same method is used for the quenched

state except that in this example the probe light is enhancing

the cell and the current increases slowly after its initial

fast rise. Delay times between the excitation of enhancement

and the probe value as short as 2 sec were experimentally

feasible.

(b) Stable: The current, and the degree of enhancement, is al-

lowed to equilibrate at each wavelength. Thus this measure-

ment represents the response for a continuously varying state

of enhancement.

(c) Fast Scan Cycle: In this method the cell is cycled from short

wavelength to long and back in a time of the order of 1 to 2

min. During this time the degree of enhancement changes some-

what and by examination of the hysteresis a qualitative esti-

mate of both stable behavior and the transient response is

obtained.

(d) Bias Light: In this measurement the response to a variable

wavelength primary light is monitored while a bias light of

constant wavelength necessary for enhancement or quenching

is simultaneously incident on the cell. The results may be

dependent on the relative intensities of the two light sources

and on nonlinear response and thus may be ambiguous if a

qualitative interpretation is attempted. (See, for example,

16
Gill6.)

In summary, a measurement is desired with a characteristic time longer

than the rise time of the photoexcited carrier level in the Cu2S
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(<0.1 sec) and the instrument response time (X0.5 sec) but shorter than

the transient time for the rise or decay of enhancement (5 sec to 100ls

of sec) and the decay time of optical degradation (0ls of sec to 1000s

of sec).

In measuring the spectra for the cell, shown in Fig. 4-12, the

transient method was used for all curves except the before-HT one which

is a "stable" response curve. Some curves are not complete since the

currents were too low to measure or the rate of E or Q was too fast to

separate from the other rise times. When this latter condition obtained

some small perturbation can be expected which would produce a relative

decrease in long wavelength response in all cases (particularly for the

Q states at 150°K and the E states at 300°K). A response curve for the

same cell before-HT (except for the very small HT occurring during fabri-

cation) is shown for comparison. After taking into account the transient

behavior, the curves are in substantial agreement with the data of Gill16

17
and Lindquist 7.

These data indicate that the shape of the transient spectral re-

sponse curve is unaffected by the state of the cell or by the fact that

its white light response has been reduced by a factor of 100 by extensive

HT. Apparent large differences in steady-state spectral response are

caused by enhancement or quenching effects introduced by the process of

making the measurement. Further, several of the curves lie above the

one taken before HT. We may conclude that excitation in the Cu2S layer

is not appreciably affected by extensive HT or by the state of the cell

and that the important photoexcitation remains in the Cu2S.

A small shoulder near 0.7i appears in all the curves taken at

150°K. Since the direct bandgap of Cu2S is at 1.2 eV while the indirect
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FIG. 4-12. Short-circuit current spectral response for cell #81 at 300°K
(full lines) and 150°K (dashed lines). Enhancing light of
0.535p (X290 Pw/cm2) and quenching light of 0.8 5p (X580 1w/
cm2) were used. The data are normalized with respect to a
probe light intensity of 9.3 pw/cm2 at 0.70p.
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band gap is 1.8 eV6 6 (0.69p), this shoulder may be due to the decrease

of indirect absorption as the phonon population is reduced at low tempera-

tures and the phonon absorption contribution to indirect photon absorp-

tion is reduced.

Photoconductor Results

The fast scan spectra for the CdS:Cd:Cu photoconductor (#94, whose

properties are described in Section 3.1) shown in Fig. 4-13 indicate

little extrinsic photoconductivity in the degraded state compared with

the restored state. In the degraded state little persistent enhancement

is seen even at 150°K where a similar fast scan for the cell would show

a large hysteresis.

In the photoconductor the rise and decay times of the carrier

density are much larger than in the cell presumably because of the pre-

sence of a large density of traps. Since the majority carriers are

replenished at the contacts of the photoconductor the current depends

only on the effective carrier lifetime and may in some cases have a decay

time of 10s of sec after the light is turned off. In the cell, however,

the supply of carriers to the CdS interface is cut off very rapidly when

the light is turned off and they cannot be replenished at the contact

(in this case the Cu2S). Thus transient measurements are much more dif--

ficult to make and to interpret in the photoconductor case because the

carrier density growth or decay cannot be distinguished from the quench-

ing transients. This topic is explored further in Section 4.3.7.

4.3.5 Effect of Optical Degradation on the Cell

As implied by the spectra of Fig. 4-12, the effect of degradation

on the short-circuit current produced by monochromatic excitation (in
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FIG. 4-13. Fast scan spectra for the photoconductor crystal at 300°K and
150°K in the restored and degraded states. Cycle time from
low X to high X and back is two min. Curves are normalized
with respect to intensity of 9.7 iw/cm2 at 0.70p. Electric
field is 14.4 V/cm and the cross-section is 0.011 cm2.
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either the E or Q states) is not large compared to the effect of enhance-

ment or quenching per se (except for the Q state at 150°K). To show the

relative magnitude of these effects more directly, the probe (small

intensity) short-circuit current, I, at 300°K for both E and Q states

is shown in Fig. 4-14 as a function of cumulative time of exposure to a

degrading light. The cell is fully restored on the left and degraded on

the right, the degradation being interrupted at various times to take

these measurements. Also shown here are the junction capacitances, C(E),

C(Q), and their difference, AC,the photocapacitance increment. These

data were measured in the same manner as the spectra except for C(E),

where the enhancing light was left on during the measurement because of

the longer time required for measurement of capacitance.

In earlier work8 8 it was found that degradation or restoration did

not affect AC appreciably. The apparent contradiction between these two

sets of data lies in the method of measurement. The earlier data were

measured with the E light off so that the cell's enhancement had been

reduced considerably by thermal quenching. The value of AC reported here

is still not large, however, compared to that of the restored state at

150°K where values of AC > 1000 pf were measured for this cell (see

Section 4.3.9).

These changes in I (E) and I (Q), measured with monochromatic

light, are small compared with degradation in white light or some wave-

length such that both enhancement and quenching occur simultaneously.

In the latter case the current decreases by a factor of 75-100 for this

cell. This difference is explained by the observation that the balance

between the rates of enhancement and quenching changes quite radically
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with degradation. Approximate data indicate that the ratio of the E

rate to the Q rate may decrease by a factor of 20-30 during passage

from the restored to degraded state.

4.3.6 Effect of Degradation on the Rates of Enhancement and Quenching

in the Cell.

In addition to the decrease in magnitude of enhanced current,

I (E), and AC during degradation shown in Fig. 4-14, there is also a
sc

variation in the rate of enhancement. In this section we will examine

the growth and decay (i.e., quenching) of enhancement as a function of

cell degradation. Although the photocapacitance is a more direct mea-

sure of cell enhancement, the time required to make capacitance measure-

ments makes them difficult to use for determining decay rates. Instead

we used the photocurrent as a measure of the cell enhancement at room

temperature according to the following procedure:

(1) The cell was enhanced by exposure to 0.60p light (19 pw/cm )

and the growth curve was recorded until the equilibrium cur-

rent was reached.

(2) The 0.60p light was turned off and at the same instant a 0.95P

light (170 1w/cm ) was turned on to quench the cell. The

decreasing current was recorded until equilibrium was reached.

(3) The cell was degraded for a time, t, with 0.535p light

(290 pw/cm ).

Since some small amount of degradation occurs with the 0.601 light during
step (1) (enhancement), step (3) was omitted for the first two points (3
and 6 sec) on Fig. 4-15b). The degrading effect of exposure to 0.60p
light during step (1) is expressed in terms of an equivalent time of ex-
posure to 0.5351 light for these two points. These times were calculated
using the ratio of intensities and efficiencies for degradation of the
two light sources (from Section 4.2.3). The 0.535p source was about 80
times more effective than the 0.60p source.
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cumulative degradation time at 300°K.
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(4) The cell was then fully quenched with 0.9 5p light and 5.0 V

reverse bias to prepare for the next enhancement and the cycle

was repeated.

An example of the growth and decay curves is shown in Fig. 4-15a.

The exponential growth and decay laws, I = I [1 - exp(-t/TE)] and

I = I0 exp(-t/TQ), fit the initial parts of the curves of Fig. 4-15a

quite well and were used to calculate the rates, 1/TE and 1/TQ, which

are plotted versus cumulative degradation time in Fig. 4-15b. Although

the curves are quantitatively approximate they clearly show the changes

in the enhancement and quenching rates during degradation. These data

may be compared with the rate of thermal quenching in the degraded cell

at 300°K of 40.14 sec.

4.3.7 Enhancement and Quenching Effects in the Photoconductor

As was pointed out in the theoretical section, the enhancement

and quenching effects seen in the cell bear some similarities to so-

called infrared quenching effects seen in CdS photoconducting crystals.

It is of interest to verify that the same effects (at least the ones

pertinent to our investigation) take place in a highly Cu doped CdS

photoconductor which shows the TROD effect.

In the cell, the normal equilibrium state is the quenched state,

i.e., a cell left in the dark at RT will become quenched. Enhancing

light charges states near the interface positively resulting in a change

in junction capacitance, AC, of some 70% in a BHT cell. Accompanying

AC are increases in the dark forward bias current and I of about 300%
SC

which are presumably due to the change in depletion layer width. In

short, AC is a direct measure of the state of enhancement.
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In the photoconductor case quenching is usually considered in

terms of a decrease in photosensitivity to near band gap illumination

when a secondary, infrared light is turned on. Thus in the photocon-

ductor the "enhanced state" is normal under near band gap illumination,

while in the dark some other state--which we discuss here--is normal.

In the photoconducting crystal the measurement of a quenching

spectrum is complicated by the slow decay of carrier density due to trap

emptying. This decay time, TR, (on the order of a fraction of a second

for a DQ or RQ state and up to 10 to 15 seconds for the RE state) is

comparable to the time constants for the operations of enhancement or

quenching. For some states spectra can be measured by the same probe

technique used for those of Fig. 4-12 (e.g., probe spectra of the DE-150°K

photoconductor agree well with the fast scan spectra of Fig. 4-13) but

in the quenched state the probe current rises very slowly at first in an

ogee shaped curve as the traps are filled and the carrier density builds

up.

We consider here the transient measurement of photocurrent in three

conditions: after illumination by enhancing light, after illumination

by quenching light, and after equilibration in the dark. Examples of

these situations are shown in Fig. 4-16a for a degraded sample at 300°K.

In the first case the crystal has been enhanced by illumination from a

high intensity 0.518p light until an equilibrium current level of

5 x 10 amps is reached. When this light is turned off the dark cur-

rent decays rather rapidly. Now when a probe light at 0.70p is turned

on some 40 seconds later, the probe photocurrent pulse "rides" on the

decaying dark current level and decays to its own stable value. Thus it

is difficult to separate the effects of decay of enhancement from the
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FIG. 4-16. (a) Probe photocurrent versus time at 300°K for the pre-enhanced
pre-quenched, and pre-dark-equilibrated conditions. Probe light
is 0.70p (9.3 Pw/cm2).
(b) Probe photocurrent with simultaneous bias light versus
wavelength of probe light. Bias light of wavelength 0.52p
(50 Pw/cm2) produces bias current level of 4.25 x 10-8 amp at
300°K and 4.85 x 10-8 amp at 150°K. Results are normalized
to a probe intensity of 9.3 1w/cm2 at 0.70p.
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decay of carrier density. If the photoconductor is quenched first using

an intense 0.85p light (to a level of 1.1 x 10- 10 amps) and quickly

(within 10 seconds) probed, the current starts at a very small value and

slowly grows to its equilibrium value. For the third case the crystal

was equilibrated (after enhancement) by 13 hours in the dark at RT and

the probe current growth curve was obtained. This curve is similar in

shape to the quenched case except for an initial cusp. For restored

states similar curves are obtained but the range of current rise is much

greater (for example, see Fig. 4-17 for the probe current growth from

the RQ state). Thus the equilibrium growth curve and the quenched-first

curve are very similar.

In order to determine the persistence of enhancement in the photo-

conductor, a number of experiments were done in which the photoconductor

was probed after varying time delays following enhancement. Rather than

the steadily decreasing peak of I seen in the cell, the effect of in-
sc

creasing time delay is to slow the growth rate of the probe pulse which

changes its form from the enhanced case in Fig. 4-16a to the quenched

case in a continuous manner. These data suggest that enhancement is not

persistent at low temperatures (ca. 150°K) in this material.

Figure 4-18 shows decay curves for the photoconductivity for this

sample for some representative states. Clearly the response time is con-

trolled by a large density of traps. The complexity of the system makes

it difficult to measure trap depths and densities although we can get an

estimate of the latter by using the approximation nt = n(l + TR/TL) from

89
Rose89 where nt is the density of traps, n is the carrier density with

the light on, TR is the response time, and TL is the electron lifetime,

about 10- 3 sec for the RE-300°K case and 10- 5 sec for the DE-300°K case.
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FIG. 4-17. Probe photocurrent (0.70i at 9.3 pw/cm2 ) versus time for the
restored case at 150°K. Sample was maximally quenched with
0.85p light before probing.
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Using the initial part of the decay curves, n = 1015/cm for both
t

cases. The fact that the decay is much more rapid for the D and Q cases

may be due either to the effect of increased recombination or a smaller

number of traps or both.

We can get approximate quantitative data on enhancement and quench-

ing despite the above difficulties by using fast scan spectra such as

Fig. 4-14 or by using a bias light. To measure the quenching of photo-

conductivity sample #94 was illuminated by enhancing bias (secondary)

light at 0.518p (corresponding to the peak photocurrent). The crystal

was simultaneously illuminated by a weaker primary light whose wavelength

could be scanned. Although there was some hysteresis even for a very

slow scan (5 to 10 min per cycle), the difference between the X increas-

ing and the X decreasing curves was small enough for us to have confi-

dence in the data. The photocurrent due to the primary light alone is

subtracted from the result leaving the amount of quenching with respect

to the constant bias light current level. This is plotted in Fig. 4-16b.

Since the bias light is %5 times as intense as the primary light the

quenching efficiency is quite large in the degraded state. A broad

quenching band extending almost to the band gap energy of CdS is seen

with a maximum near 0.85p. This agrees well with both the quenching

17
spectra of the cell as measured by Lindquist and to quenching spectrums

90 91
from published photoconductor data ' .

In the restored state case the measurement is further complicated

by degradation by the bias light during the wavelength scan. When the

measurement described above was attempted on a restored cell the peak

current had dropped to half of its fully restored value before the cycle

had been completed. Thus no quantitative results could be gained without
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a stable primary light spectrum. However, the spectrum with bias light

shows no appreciable deviations below the bias photocurrent level and

it is concluded that quenching effects are much smaller for the restored

state. Thus most of the hysteresis in the fast scan spectral response

(Fig. 4-14) is probably due to the long response time in the restored

state as illustrated by Fig. 4-18.

In summary we conclude:

(1) The quenching spectrum in this highly doped crystal which

shows the TROD effect is substantially the same as seen in

other more lightly doped CdS materials.

(2) The quenching spectrum in the degraded photoconductor is

substantially the same as seen in the cell.

(3) The decay of photoconductivity in the photoconductor is very

long and is dominated by trapping processes. This decay time

is a function of the state of the cell; it is shorter for the

degraded state than for the restored and it is shorter for

the quenched state than for the enhanced state.

4.3.8 Junction Capacitance Measurements

Measurements of junction capacitance as a function of bias voltage

were made on several cells in order to define the junction profile in the

various cell states. In principle such measurements can be used to

determine both the effective barrier voltage and the profile of the ion-

ized donor or acceptor concentration (net) near the junction. However,

2 2
the extrapolation of the 1/C versus bias voltage, V, to 1/C = 0 to

determine the barrier voltage, Vb, depends sensitively on the presence

of interface states, dipoles, and trapping effects as well as the grading
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of the junction. Nevertheless, the determination of net donor density

from the slope of the 1/C versus V curves is relatively insensitive

to these effects9 2'9 3'9 4'9 5'9 6. Since the net acceptor density in the

Cu2S, NA Cu2 S' about 1019/cm3 is much larger than the net donor density

in the CdS, (N - NA ), we can write (following Van Opdorp )
D A'

d (A)2  2 (4.4)

dV C VV qE (ND - NA)
o

where A is the junction area, q is the electronic charge, and c is the

permittivity of the CdS (10C ). Most of the depletion layer width, wd(V),

is on the CdS side of the junction since NA Cu2 S >> (ND - NA) and cor-

responding to each bias voltage, V, we have a junction capacitance given

by

C(V ) cA/wd(V o) (4.5)

Thus we can obtain the value of (ND - NA) as a function of the distance

away from the metallurgical interface measured by wd.

2
In Fig. 4-19 are presented 1/C versus V curves for cell #61 after

a small HT (X2 min at 100-130°C). These include curves measured at

both room temperature and 150°K corresponding to the DQ state and to the

DE state with 0.535p light on during the measurement to maintain enhance-

ment. They may be compared with similar curves for non-HT cells and cells

with small HT measured by Lindquist 1 7 (Fig. 5-37) and by Gill1 6 (Fig. 4-11).

Before any HT the curves are linear and extrapolate to barrier voltages

of 0.43 V to 1.1 V. After short HT the curves develop the upward convex

"knee" shape seen here.

The capacitance values have been corrected for cell series resistance.
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After extensive HT the knee develops into a linear segment which

extrapolates to a voltage much higher than Vb . This is characteristic

of a junction which includes a low conductivity layer (i-layer) which

dominates the junction capacitance. For the extreme case when the i-layer

is completely insulating, the width of the layer, wi, is determined by

the extrapolation of the high reverse bias 1/C curve to the barrier

voltage (obtained by other means) where the capacitance value gives w.

from Eq. (4.5). Since it is determined by the doping profile near the

junction, wi is a constant for a given HT and is always smaller than wd
1

for a perfectly insulating layer.

The slope of the high reverse bias curve in Fig. 4-19 in the

quenched case gives (ND - NA) = 0.46 x 10 16/cm which corresponds well

with the value of q(ND - NA) determined by conductivity measurements for

the CdS crystal from which the cells were made. That measurement gave

0.4 x 1016/cm3 assuming a mobility of 300 cm /volt sec at room tempera-

ture. With the enhancing light on, the value of (ND - NA) increases to

40.95 x 101 6/cm . This increase is probably due to photogeneration of

electrons from deeper centers in the CdS leaving a net positive charge

which adds to the apparent uncompensated donor density, i.e., the photo-

capacitance. After HT when wi becomes larger, the i layer begins to

dominate the measured capacitance and the effect of photocapacitance on

the junction capacitance expected to become much smaller for the degraded

cell.

The rise in the E-on (enhancing light on during the measurement)

curves for large reverse biases may be due to either (1) reverse bias

quenching, or (2) that wd is approaching the end of the region of photo-

excited centers and entering the region of the CdS which has not been
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doped with Cu about 0.8p from the Cu2S-CdS interface. The second possi-

bility is supported by the Q-150°K curve which shows a higher slope

indicating a lower net donor density out to 0.6-0.8p from the interface.

In Figs. 4-20 and 4-21 are shown similar curves for cell #61 after

%6 min of HT. In these curves we can see a general increase in wi., and

the difference between R and D states becomes obvious. Note in particu-

lar the very small zero bias depletion layer width in the R-150°K and

DE(on) states as compared with the remaining states at 150°K and 300°K.

The value of wd is virtually the same in the R-150°K states as it was

before HT.

The net positive charge density, N(x) = (ND - NA), profiles calcu-

lated from the 1/C versus V curves [using Eqs. (4.4) and (4.5)] are

shown in Fig. 4-22 where the zero bias depletion layer widths have been

marked on each curve. Because of bias current limitations and the un-

suitability of the model for forward biases near Vb, the portions shown

are the only accessible parts of the curves (with the exception of the

DQ state where higher reverse biases show no appreciable change in slope).

These data imply that restoration changes the i-layer (degraded) to a

layer of fairly high conductivity even in the quenched state. Three

distinct regions of (ND - NA ) develop, especially in the RQ-150°K case:

a region adjoining the interface of increasing donor density, a broader

region of minimum density, and a transition region to the bulk CdS.

Figures 4-23, 4-24, and 4-25 give similar data for cell #81 after

a HT of about 1 hour. The i-layer is wider, of course, but the R state

value of net donor density is still large. In the D state, the high

reverse bias slope indicates a net donor density of about 0.3 x 10 16/cm3

which again corresponds well with the conductivity donor density of the
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starting material.

4.3.9 Effects of Depletion Layer Width on I
sc

In order to relate the short-circuit current of the cell to the

junction profiles of the previous section, it is helpful to plot ISSC

versus the zero bias depletion layer width, wd.  These data also demon-

strate in a different way the effect of enhancement and quenching on Isc

Cell #81 was restored and cooled to 150°K where I was measured
SC

over the range of currents obtainable by enhancement (with 0.53 5p light

at 290 pw/cm ) and quenching (with 0.95 light at 570 pw/cm plus 5 V

reverse bias). The transient technique of Section 4.3.4 was used with

weak probe light at 0.70p (9.3 pw/cm ) to excite I . The junctionscSC

capacitance was measured before each probe. The data are shown in

Figs. 4-26 and 4-27 for several degrees of restoration and two HT times.

These data support the hypothesis that in the degraded state the

capacitance is dominated by the width of the i-layer thus effectively

masking any change in junction capacitance brought about by enhancement

or quenching. These changes can only be seen in the restored cell where

the Cu doped layer becomes conductive or in a degraded cell in which

the i-layer is much thinner. Considering the fact that the width of the

Cu doped layer is constant during this measurement the data imply that

the width of this layer is not the major controlling factor for the

photocurrent.

The end points on the curves show the limits of the values of I
sc

obtainable by enhancement or quenching for the various states of restora-

tidn under these experimental conditions.
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FIG. 4-26. Short-circuit current versus reciprocal capacitance for cell

#81 (%1 hour of HT) at 150°K. The cell was degraded for
times and temperatures shown with 0.535p light.
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FIG. 4-27. Short-circuit current versus reciprocal capacitance for cell
#61 at 150°K. Curves are for the cell before HT, and for
the fully restored and fully degraded states after %6 min of
HT.
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These data show an exponential dependence of IS on wd for the
sc

restored case. The same exponential dependence, with somewhat greater

slope, has been reported by Lindquist 4 5 for cells before HT.

4.3.10 Effect of Cell State on the Dark I-V Curves

The dark forward bias current versus voltage curves for a typical

cell (#81) shown in Figs. 4-28 and 4-29 demonstrate the large changes

taking place as the state of the cell is changed. Although individual

differences from cell to cell remain, there is enough agreement so that

qualitative comparisons can be made.

These data were taken for both increasing and decreasing voltage

on an x-y plotter. Since no appreciable hysteresis appeared they are

stable curves with the exception of DE-150°K where the bias voltage

quenched the cell very slightly during the cycle. The "light-on" curves

were measured while the cell was illuminated by 0.535p light of intensity

290 Pw/cm2 to maintain maximal enhancement. The photocurrent was then

subtracted. Values of a from the diode relation, If = I [exp(aV) - 1],
o

are shown where applicable.

By examination of these curves and comparison with data from other

cells the following observations can be made:

(1) Currents in the quenched states are lower than those in the

corresponding enhanced states (often by several orders of

magnitude). The ratio between E and Q currents generally

becomes smaller at higher biases.

(2) The high bias slope (a) is usually 23 to 28 except in the

light-on situation and the R-150°K states.

(3) In the R-150°K cases and the DE-light-on cases (both 150°K
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FIG. 4-28. Dark current versus forward bias voltage at 150°K for cell

#81. "DE (on)" is done with enhancing light on and the

short-circuit current has been subtracted. Values of the

exponential slope a are shown on the curves. For a perfect

Shockley diode, a = 77.1/volt at 150°K.

107

i-4

-6

I0-

lo-8

(I)

z

0

i1O

0



I(-4

! (:f65

I0F5 -

-6 -

-7

l-8
1078

-i9

0

FORWARD BIAS, VOLTS

FIG. 4-29. Dark current versus forward bias voltage at 300°K for cell
#81. For a perfect Shockley diode, ca = 38.6/volt at 300°K.
A before HT curve is shown for comparison.
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and room temperature) the current is dramatically raised and

the curves take on a form which can be fitted by exp(BV\)

rather than the straight line segments represented by exp(cV).

(4) The form of the log I versus V curve before HT is very similar

to that of the RQ-300°K state in all cases examined (from %6

minutes of HT to more than an hour) although the magnitude of

the current is decreased by a factor of 103 for the HT cases.

(5) The data for cell #81 shown in Fig. 4-29 is somewhat atypical

in that the current in the DQ state is higher than that for

the RQ state. More typical is an RQ curve in the position

shown with the DQ curve lower by an order of magnitude or

two.

4.3.11 Variation of Dark Forward Bias Current with Temperature

T < 300°K

In this section we consider the variation of the dark I-V curves

with temperature more carefully. A series of I-V curves taken in tempera-

ture increasing steps from 104°K to 300°K are plotted as log I versus

V1 / in Fig. 4-30.

The degree of the restoration affects the shape of the I-V curves

significantly. Thus when the cell was restored at 140°C for 2 minutes,

a curve (labeled 140°C HT in Fig. 4-30) containing both high and low

slope segments was obtained at 300°K and the current increase on cooling

was small. After an additional HT at 200°C for 2 minutes, however, the

low slope portion of the curve moved to much lower currents and the cur-

rent increase on cooling was large. The remainder of the curves were

taken in this condition.
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FIG. 4-30. Dark forward bias current versus V1 /  for cell #61. Curve
labeled "140°C HT" was taken after the cell was restored for
2 min at 140°C. Cell was restored 2 min at 200°C for the
remaining data.
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It can be seen that the RQ current follows an exp(V 1/ 2) law

quite well. Although the slope changes little below %200°K, the current

is a strong function of temperature.

1/2
The same sort of exp(8V /) dependence was seen in the commercial

69
thin film cell (after HT) measured by Gill6 9  In that situation the

V1 / dependence holds from 119°K to 295°K and up to a bias of about

0.5 volts.

In order to study the temperature variation of the dark forward

bias current, If in more detail, several temperature cycles at constant

bias were run in both DQ and RQ states.

In the course of the measurements, another variable appeared. If,

in the RQ state, the cell was cooled from room temperature with a forward

bias, Vf = 0.4 volts for example, the current measured at a Vf = 0.15

volts had risen to around 10- 4 amps at 150°K. Quenching with wavelengths

in the range 0.80P to 1.10p lowered the current only %20%. However,

reverse bias V = 3.0 volts caused a reduction to 2 x 10- 6 amps in 15
r

seconds. Further applications of V and 0.95i light resulted in a stable
r

value of 0.34 x 10- 6 amps. The increase of current due to cooling with

forward bias is somewhat sensitive to the cooling rate, especially at

higher biases, but reproducible data were obtained by standardizing

conditions.

Data taken on cell #81 for increasing temperature in the RQ state

are presented in Fig. 4-31 for the following 3 cases:

(a) At Vf = 0.4V (after cooling with Vf = 0.4)

(b) At Vf = 0.15V (after cooling with Vf = 0.15)

(c) At Vf = 0.15V (after cooling with Vr = 5.0).
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FIG. 4-31. Dark forward bias current versus reciprocal temperature for
cell #81. All curves are taken during heating cycle. Tran-
sient thermally stimulated current peaks appear on the DQ,
0.2 V bias curve.
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These data are in substantial agreement with the data of Fig. 4-30 which

were taken for a different cell.

Above room temperature the current increases with increasing tem-

perature with a thermal activation energy of 0.3 to 0.4 eV while below

%180°K the current decreases with increasing temperature with an apparent

activation energy of 0.16 eV (but this may be somewhat rate dependent).

Current in the RE case is even higher than the RQ case shown here.

The reverse bias current also shows a large increase in the restored

state at 150°K, as compared with the other possible states. Although

different in detail, data from other cells with as much as an hour of HT

corroborate these data showing a large increase in current as tempera-

ture is decreased.

In contrast the forward bias current in the DQ state behaves quite

as expected as the temperature is lowered. Near room temperature If shows

an activation energy of 0.3 to 0.4 eV and at lower temperatures it ap-

pears to saturate at a constant value.

The curve for the DQ state shown in Fig. 4-31 correspond very well

68
to Lindquist's results for un-HT cells . He extrapolated the high for-

ward bias current to zero voltage to obtain I in the expression
0

If = I o(exp aV - 1) and plotted the results versus 1/T to obtain activa-

tion energies of 0.26 eV for an "a" face cell and 0.47 eV for a "b" face

cell and a similar saturation at a constant "leakage current" at low

temperature.

Gill's before-HT cell showed little temperature dependence of

either logarithmic slope or value of the forward bias characteristic;

however, only the low bias region ( = 12.5) was observed69. After HThowever, only the low bias region (a~ = 12.5) was observed . After HT
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Gill found a strong temperature dependence and an activation energy of

0.43 eV near 300°K and at Vf = 0.5 volts. Gill also investigated a

commercial thin film cell and found only a weak dependence of the dark

If - V characteristic on temperature in what appears to be the low af f

region.

T > 300°K

In the course of making elevated temperature measurements, it was

noticed that a stable and reproducible current was produced by the cell

in the dark with zero applied bias. During the experiments with cell

#89, the cell was mounted on a copper strip with thin layers of mica

and Insulgrease (a thermally conducting mounting compound manufactured

by General Electric) between. The Cu2S side was normally in contact

with the mica and the temperature of the strip was controlled so that

due to radiation losses the Cu2S was probably slightly hotter than the

CdS. On reversing the cell in the sample holder, thus making the CdS

somewhat hotter, the zero-bias currents were observed to be reversed in

direction. Thus it was concluded that these currents were driven by the

thermal gradient across the sample. Even though the temperature differ-

ence is estimated to be less than 5°C across a 1 mm thick cell, the

currents are appreciable. These considerations suggest that the current

is thermionic in character, resulting from most of the thermal gradient

being across the potential barrier of the cell. The zero-bias current

for the Cu2S hotter than the CdS condition is shown in Fig. 4-32 (cell

#89), plotted as log If/T versus l/T, assuming a Richardson-law depen-
f

dence. This current is in the same direction as a photoexcited short-

circuit current. For the case where the CdS is hotter than the Cu2S,
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the direction of the current is opposite to that of the photoexcited

short-circuit current, and about 1/3 of the magnitude of the current

measured with the Cu2S hotter; both curves, however, show the same

temperature dependence, with an activation energy of 1.2 eV at higher

temperatures, and an activation energy of 0.45 eV at lower temperatures,

the latter being less well defined for the CdS hotter.

Taken by themselves these data are interesting, but not particu-

larly interpretable because of the complex nature of the possible

phenomena involved. When compared with data on the temperature depen-

dence of-dark current under forward and reverse bias, however, they form

a strong case for the identification of the activation energies involved

in the zero-bias "thermionic" case with the energy barriers determining

the basic electrical properties of the heterojunction. Figure 4-32 also

shows data for 0.1, 0.2 and 0.4 V forward bias and 0.2 V reverse bias.

Measurements by Gill 6 indicated a higher-temperature dark forward-bias

current activation energy of about 1.2 eV for a HT cell, and Lindquist17

saw, near room temperature, a dark forward-bias current activation

energy of about 0.47 eV for a cell before HT.

The activation energies obtained at various bias voltages are

summarized in Table I for the case of Cu2S hot. These values have been

corrected for the applied bias by assuming that a tunneling level

(located 0.45 eV above the Fermi level at zero bias) is present in the

junction region. When the cell is biased, the tunneling level is shifted

by an amount equal to about half the difference between the Fermi level

in the Cu2S (at the top of the valence band) and the Fermi level in the

CdS (near the conduction band edge of CdS), i.e., a shift equal to one-

half of the applied bias voltage. Such a model implies a dark current
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through the heterojunction which consists of two components: (a) a

current going over the barrier (called the diode current here), and (b)

a tunneling current through the level 0.45 eV above the dark Fermi level.

This model explains all of the curves in Fig. 4-32, including the dif-

ference between the +0.2V and -0.2V bias curves. This difference arises

because the current through the tunneling center for reverse bias is

much larger than the diode current which encounters a 1.4 eV barrier. In

the forward-bias condition, the diode current encounters about a 1.0 eV

barrier and overwhelms the tunneling current at a lower temperature.

As far as the zero-bias current is concerned it would be expected

that a thermoelectric effect corresponding to each of the junctions in-

volved in the cell would develop a potential depending linearly on tem-

perature for small temperature differences across the cell. The

measurement, however, is of short-circuit current, and this current is

controlled by thermal excitation with an exponential temperature

Table 4-1

DARK CURRENT ACTIVATION ENERGIES, eV

Bias Low Temperature Range High Temperature Range

Measured Corrected Measured Corrected
to 0 Bias to 0 Bias

0 0.45 0.45 1.23 1.23

+0.1 0.40 0.45 1.06 1.16

+0.2 0.34 0.44 1.03 1.23

+0.4 - - 0.88 1.28

-0.2 0.34 0.44 - -
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dependence. The consistency of the activation energies in the zero-

bias case with those for nonzero bias supports this hypothesis. The

other energy gaps or barriers in the system are either too small (at

the In-CdS and In-Cu2S ohmic contacts) or too large (the CdS band gap)

to control the supply of carriers in this temperature range. Thus the

current must be controlled by the Cu2S-CdS barrier.

The expression for the diffusion current across a p-n junction

diode contains a pre-exponential factor which varies as Tn where

2.75 ~ n < 4.25, depending on the type of scattering involved. On the

other hand, the expression for thermionic emission from a metal contact

2
into a semiconductor involves T2 . This relation may be more appropriate

in the case of zero or reverse bias, because of the almost metallic

2
character of the Cu2S. Thus the pre-exponential factor T was chosen.

Since the exponential dominates (especially for the higher temperatures),

the power of T makes only a small difference in any case.

Data taken for the CdS hotter than Cu2S, showed the same bias-

corrected activation energy of 1.2 eV for all biases, but the 0.45 eV

energy was either absent or too small to measure. Magnitudes of the

current and +0.2 and +0.4V were about the same as for the Cu2S-hotter

case, but for zero bias the current was smaller by a factor of 2.5, and

2
for -0.2V it was smaller by a factor of about 102.

The forward currentthrough the 0.45 eV level at 0.1V forward bias

is about 10 times greater for the restored state than for the degraded

state for this cell (see Fig. 4-32). This difference may be due to a

change in the density of these levels on degradation, or to a change in

the local thickness of the depletion layer. (Although this thickness
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does not change appreciably from degraded to restored states at or above

RT, the state of quenching or enhancement, which does affect the deple-

tion layer width, may change during such heating.) Current flow through

this level does not appear to be as important for the CdS-hotter case.

The cell described in Fig. 4-32 has undergone a total period of

heat treatment at 200°C of about 3 to 4 hrs. In order to avoid the pos-

sibility that its properties were uniquely determined by this extensive

heating history, we examined a new cell (#81) after only 10 min of heat

treatment at 200°C. The new cell was mounted in a holder (shown in

Fig. 3-2) in which thermal contact was made on the faces of the CdS

perpendicular to the Cu2S layer. This holder more nearly enclosed the

cell thus further reducing thermal gradients. The same activation

energies and the presence of a dark zero bias current were confirmed with

this cell. Data for 0.1 volts forward bias, for example, agreed almost

exactly with the previous data except that the 0.45 eV portion of the

current was reduced in magnitude.

It may be concluded from the above data that an energy barrier of

about 1.22 eV, equal to the band gap of Cu2S, exists in the cell after

HT, and that the dark currents behave in an appropriate manner as differ-

ent bias voltages are applied. This activation energy persists at least

over the range 90° to 210°C, and seems quite stable over this range.

Further, it dominates dark forward bias current for high temperatures

and/or biases. There also appears to be a defect state in the potential

barrier about 0.45 eV above the zero-bias Fermi level, through which

current can tunnel in both directions. The 0.45 eV level dominates the

dark forward bias current near room temperature or below for bias volt-

ages below 40.4 volts--where the cell is operated for power generation.
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4.3.12 Thermal Cycles for I
sc

Complete thermal cycles of short-circuit photocurrent, I Sc demon-

strating the interaction of restoration/degradation and enhancement/

quenching effects were measured for both the cell and the photoconductor

to show the similarity of the processes in the two cases. Since the

measurements were made with white light, both enhancement and quenching

were taking place simultaneously and the curves represent the balance

between the two.

A complete thermal cycle of I for white light excitation for
sc

cell #89 is given in Fig. 4-33. The cycle starts with a completely de-

graded cell in the DQ state. As the temperature is decreased the cell

goes to the DE state due to the decrease in thermal quenching of enhance-

ment with cooling. There is little hysteresis as the cell is cycled

back to room temperature. From 325°K to 375°K the current drops to un-

measurably small values (<10- 10 amp) as the state reverts from DE to DQ,

and then increases as the temperature is raised and thermal restoration

to RQ takes place. (The dark "thermionic" current has been subtracted

from these data.) As the temperature is decreased from 475°K the cell

is subjected to "cooling enhancement"* (see Section 4.3.14) below 350°K

and enters the RE state. A small amount of optical degradation also

occurs on this decreasing part of the cycle. Although a record was not

taken for this particular cycle, the heating curve of the restored cell

from 150°K to 300°K follows the cooling curve with only a small hysteresis.

*
The enhancement here consists of two components: (1) equilibration to a
white-light, restored state enhancement level appropriate for the tem-
perature, implying decrease of thermal quenching on cooling and (2) en-
hancement due only to the act of cooling the cell. Taking into account
the intensity of the light and the speed of the temperature scan the
former is likely to be the largest component.
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FIG. 4-33. White light short-circuit current versus inverse temperature.
"BHT cell" are data from Lindquist17 multiplied by 10-3 to
fit on the plot conveniently. "Cell #36" data are taken
after short HT at 150°C and are multiplied by 6.1 x 10-3 to
join the BHT data. Other curves are for cell #89 after long
HT (light intensity is 1400 pw/cm2 for cell #89).
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A "degradation maximum" (TROD curve maximum) for the same cell is shown

for comparison.

By comparison with the HT case, there is very little temperature

dependence of IS in the cell before HT. Data reproduced from Lindquist's
sc

17
work 7 for white light IS in Fig. 4-33 show only a 33% decrease as the

sc

cell is cooled from 300°K to 150°K. For the range above RT, data are

shown for cell #36 which had been HT to 160°C for about 1 minute prior

to this heating cycle. The data has been normalized to join Lindquist's

curve. These data, also taken in white light, show an abrupt step in

I due to a phase change (to be discussed in Section 4.3.14) but there
sc

is no rapid variation in current on either side of the step.

The complete cycle for the photocurrent in the photoconductor for

2
white light (1400 Pw/cm ) is shown in Fig. 4-34, and can be compared

directly with the cycle shown in Fig. 4-33. The cycle shown in the

lower curves starts with a fully degraded photoconductor at 270°K while

the cycle shown in the upper curves starts with a fully restored photo-

conductor at 300°K.

The dark current for both degraded and restored cases is also

shown on Fig. 4-34. On heating the photoconductor in the degraded state,

a relative maximum in current occurs at about 400°K which appears to be

a thermally stimulated current peak accompanying the restoration process.

The peak disappears on cooling and it does not reappear on heating the

restored photoconductor. The location and magnitude of the peak is quite

variable depending on the rate of cooling, whether or not the photocon-

ductor was cooled with light and/or bias on, and the method of degrada-

tion. Magnitudes from 1.4 x 10-10 to 2.5 x 10- 8 amps have been observed
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FIG. 4-34. Photocurrent (white light, 1400 Pw/cm ) versus reciprocal
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of dark currents are shown by dashed line at left. Rate of
scan is %1°C/sec.
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at temperatures ranging from 360°K to 425°K. For this reason a repre-

sentative curve is shown and the dark current has not been subtracted

from I . I probably becomes unmeasurably small as the degraded photo-
P P

conductor is heated from about 320°K to 380°K, the observed peak there

being only dark current. On the restored branch, however, the dark

current in this range becomes very small compared to the photocurrent.

The reduction of thermal quenching in the cell produces a large

increase in the current in the degraded state as the cell is cooled. In

the restored state this thermal quenching shoulder is shifted toward

higher temperatures and the cell's white light equilibrium enhancement

is much larger at room temperature than in the degraded state. This

shift of the thermal quenching shoulder appears to be smaller in the

photoconductor case. The magnitude of the shift in the upper heating

branch (in Fig. 4-34) from the restored state may be lessened because of

degradation during the cycle, however, which is larger and faster in the

photoconductor than in the cell.

4.3.13 Relationship of I to If
sc f

Thus far we have treated the short-circuit current and the dark,

forward-bias current as dependent variables, each of which depend on the

properties of the cell. Now we wish to complete the picture by showing

directly the relation between them. We have found a monotonically in-

creasing relationship between I and If over a wide range of conditions.
sc f

After restoring cell #89 (HT about 1 hr) it was taken over a TROD

curve at 300°K with white light such as that shown schematically in

Fig. 4-9. The degradation of the cell was interrupted at various times

both before and after the TROD maximum to measure the dark, forward-bias
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current and the stable I response to a white light of intensity
sc

14 pw/cm . The results, for a bias of 0.1V, given in Fig. 4-35 show an

almost linear dependence over 3 orders of magnitude. The TROD curve

corresponds to a RQ to RE to DQ transition with time, and in the figure,

the points taken during the rise of the TROD curve are distinguished

from those taken during the decay. The I begins to saturate around
sc

-8
10 amps because this is the maximum current injected by the Cu2S.

2

Similar data were taken at 150°K for cell #61 with 6 min of HT.

In this case the cell was put into several definite states of restoration

and the current was varied by enhancement and quenching. These results

are shown in Fig. 4-35 in terms of I excited by 0.70p light of 9 pw/cm2
sc

intensity. These data were measured by the transient methods described

in Section 4.3.4 to avoid changing the degree of enhancement by the act

*
of measurement.

The 150°K curves are displaced along the If axis for different

degrees of degradation while the 300°K data forms a single curve repre-

senting all degrees of degradation. This is the result of the anomalous

rise of If for the R-150°K state described in Fig. 4-31.

4.3.14 The 82°C Phase Change

Examination of the temperature variation of I in more detail
sc

reveals a reversible phase change at about 82°C which can be identified

with the orthorhombic-tetragonal transformation in the djurleite

(Cul 96S ) form of copper sulfide. Figure 4-36 shows this variation for

*
In the completely restored case the junction conductance is so great
that the voltage drop of the measuring instrument (V = IR with R = 100
ohms or about 0.02 mV maximum in this case) begins to influence the
measurement and IS starts to drop slightly for larger degrees of
enhancement.
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io-O 10-9  10-8

SHORT CIRCUIT CURRENT, AMPS
FIG. 4-35. Short-circuit current versus dark forward-bias current. Bias

voltages as given. All curves are for Cell #61 at 150°K with
0.70P light except as noted.
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FIG. 4-36. White light short-circuit current versus temperature for
cell #36.
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monotonically increasing and decreasing temperature in an un-HT cell

(#36, cycle time about 6 minutes). The transition on heating is rather

sluggish but on cooling there is a rapid increase in I with rise time
sc

less than 0.5 sec. The transition can be seen in both I and the dark
sc

forward bias current. The effect was observed in 3 other cells after

moderate HT. There was some variation in form depending on the degree

of HT.

In cell #81 with 1-2 min of HT at 200°C, a step similar to the

before-HT case is seen. The cooling enhancement effect starts at rela-

tively high temperature in this cell and the current after the step is

extremely sensitive to cooling rate. In this case, by cooling very

slowly, the magnitudes of the transients can be reduced to the point

where they are no. longer visible. Figure 4-38 shows the cooling tran-

sients in four situations for the degraded state:

(1) Dark zero bias current ("thermionic" current).

(2) Dark forward bias current at 0.04 volts.

2
(3) I with 0.535p light of intensity 1 pw/cm .

sc
2

(4) I with 0.85p light of intensity 5 jw/cm .

SC

Comparison of the last two items suggests that the phase change is ac-

companied by enhancement of the cell. This may be due either to a heat

flow effect or a piezoelectric effect produced by a change in interface

strain on a volume change of the Cu2S. The I is not cooling rate
sc

dependent above the transition temperature.

After considerable HT of the cell (#89 in this case) the evidence

of the transition became a large, instantaneous rise (with rise time

limited by the measuring instruments) which rapidly decayed to the

original path of the curve in 1-3 sec. This is shown in Fig. 4-37. In
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FIG. 4-37. Dark forward-bias current versus
Bias voltage 0.4 V.
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FIG. 4-38. Cell #81 currents versus temperature.
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the restored state this cell shows the transition at 78°C and only on

cooling. It occurs only if the temperature has exceeded about 92°C.

After degradation the transition appears on heating also.

Although the mechanism for the change in cell properties during

the transition remains in doubt, the evidence for the presence of the

phase change is clear. Comparison of the stable nature of the phase

change before HT with the transient nature after suggests that the con-

trol of the photocurrent has been transferred from the Cu2_xS to the

CdS near the interface. Thus in the before-HT case a change of phase

implies a different electron-hole pair generation efficiency. After HT,

when enhancement and quenching effects dominate the control of current,

the phase change may influence the state of enhancement (and thus the

current) through either heat flow as the heat of transformation is dis-

sipated or strain effects due to a volume change.

4.3.15 The Cooling Enhancement Effect

Rapid cooling of the restored cell in the temperature range from

80°C to 25°C produces enhancement of the cell which is exhibited as an

increase in both IS and the dark forward bias current, If. The greater
sc

the cooling rate the greater the degree of enhancement produced. This

enhancement is maximized by the application of forward bias during cool-

ing, although it occurs to a lesser degree even with zero bias. The

properties of the cell (as tested by the forward bias current in the

dark) do not seem to be temperature rate dependent in any other region,

and only for cooling in this region. The effect is either absent or

small in the degraded state.
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Figure 4-37 demonstrates this effect as represented by If measured

at 0.4V on cooling restored cell #89. The curve is continuous and the

second cycle is done at a faster cooling rate. The phase change spike

was discussed in Section 4.3.13.

After 1/2 to 2 hours at room temperature at zero bias in the dark,

a quenched state characterized by an extremely low I (less than 10- 9
f

amps at 0.4 V) and correspondingly low IS is reached. Application of
sc

forward bias or enhancing light, especially at temperatures above room

temperature (but below 80°C) raises If, replacing the low-current state

with some metastable state of higher current. Thus the absolute low-

current state, although it is the equilibrium state, is quite elusive,

because of the slow decay rate and the fact that any measurements made

on the cell at larger bias or light intensities put the cell into

another relatively stable higher current state.

Measurements of junction capacitance and comparison of decay rates

showed that the high-current and low-current states, defined by the rate

of cooling kinetics after thermal restoration, are identical with the

enhanced and quenched states, produced by optical excitation.

For cells with little HT, the rising portion of the cooling curve

appears to have moved to a higher temperature, making the phase change

spike into a step with rise governed by the cooling rate.

Lindquist1 7 observed a similar but more stable enhancement effect

on cooling degraded cells in the dark in the temperature range from

about 250 to 100°K although this effect did not appear to be rate de-

pendent.
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4.3.16 Variation of Photocurrent with Light Intensity

Before HT the photocurrent is linear with light intensity as

68
reported by Lindquist . After HT, however, the photocurrent varies

with the 1.28 power of the light intensity at room temperature as shown

in Fig. 4-39 (DE state). The superlinearity occurs because of better

collection efficiency when the enhancement is increased by higher light

intensities. The competing process, thermal quenching, becomes less at

lower temperatures so that the photosensitivity increases and the

current-intensity variation approaches linearity.
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Chapter 5

DISCUSSION

5.1 Introduction

We begin this section with a brief summary of the results of our

experiments with heat treated (HT) Cu2S-CdS heterojunction cells. Then

from the more obvious implications of our data we draw the conclusion

that the short-circuit current I in the HT cell is primarily controlled
sc

by the Cu doped CdS layer at the interface rather than by the Cu2S layer.

The elucidate the nature of this control we derive information on the

structure of the CdS side of the junction from 1/C2 versus V measure-
f

ments. Finally we show how the thermally-restorable optical degradation

(TROD) effect and the enhancement and quenching phenomena modify the

junction profile to control I and the dark, forward-bias current If.
scf

5.1.1 Perspective

The major contributions of this work are: (1) the extension of the

photocapacitance model of Gill and Lindquist to cells with long HT, (2)

the elimination of the conduction band spike model for control of I in
sc

favor of a tunneling-recombination model in which I transport is modu-
sc

lated by the conduction band profile on the CdS:Cu side of the junction,

and (3) the discovery and exploration of the TROD effect in Cu2S-CdS cells

and the description of its role in the HT cell.

Summarized below are the major experimental results which we seek

to explain.
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The cell has four definable electronic states, enhanced (E),

quenched (Q), restored (R), and degraded (D). Similar states are also

seen in Cu doped CdS photoconducting crystals.

The characteristics of enhancement and quenching deduced from our

work appear to be qualitatively identical to those observed by Gill and

Lindquist (which are also reviewed briefly in Sections 1.2.4 and 2.3).

The properties which characterize the E and Q states in the cell are

summarized below:

E (1) Produced optically by short wavelength illumination or by

cooling from %360°K with forward bias voltage applied. The

excitation spectrum for enhancement is sharply peaked around

0.53p.

(2) I is increased almost to its pre-HT value.
sc

(3) Hole trapping at deep levels in the CdS:Cu near the interface

decreases the width of the depletion region and increases the

junction capacitance. This increase is called the photocapa-

citance.

(4) If is increased.

(5) The state is not stable at room temperature because of thermal

quenching but is persistent below %200°K.

(1) The trapped holes responsible for the photocapacitance are

freed optically by long wavelength illumination, thermally at

temperatures above %200°K, and by the application of forward

or reverse bias to the cell. The quenching spectrum is broad

with maxima at 0.85p and 1.35p.

(2) I , , and the junction capacitance are decreased.
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(3) The state is stable at all temperatures at which measurements

have been made.

Enhancement and quenching are competing processes at room temperature

and below, for example, under illumination by white light with both en-

hancing and quenching wavelengths present, or under enhancing illumina-

tion at room temperature when thermal quenching is the competing process.

The effects of enhancement or quenching appear to be qualitatively

the same in the restored state or the degraded state, although quantita-

tive differences are found. The magnitude of quenching measured by the

decrease in I and the rate of quenching with a constant photon flux
sc

are larger in the degraded state (Section 4.3.6).

Optical quenching is also seen in homogeneous Cu doped CdS single

crystal photoconductors. Since there is a layer of CdS highly doped

with Cu (by diffusion from the Cu2S) in the cell it is probable that the

same centers are responsible for enhancement and quenching in both cases.

This view is supported by the fact that the cell and the photoconductor

have the same quenching spectrum. However, the mechanisms for control

of the current are different. In the cell IS is modulated by an inter-
sc

face effect (e.g., a conduction band spike and/or interfacial recombina-

tion) which determines the fraction of carriers photoexcited in the Cu2S

which are injected into the CdS. In the CdS:Cu photoconductor on the

other hand the contacts are ohmic and quenching causes a shift in the

hole population from a group of low recombination rate centers to a group

of high recombination rate centers with a resulting decrease in electron

lifetime6 5'90 '91 . The photocurrent is controlled by recombination in

the bulk of the CdS.
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After HT in the dark, subsequent exposure to light causes certain

changes in the electronic nature of the cell and the CdS:Cu photocon-

ductor which are irreversible except by a further HT. These changes are

termed optical degradation because their most obvious manifestation is

a large decrease in IS and the photocurrent, respectively (shown in the
sc

degradation versus time curves of Fig. 4-4). Optical degradation occurs

only at temperatures over 200 to 250°K (as shown in Fig. 4-5). In the

cell optical degradation is in general characterized by decreases in I

If, and the junction capacitance. The shape of the spectral response

curve is not changed appreciably however (Fig. 4-12). In the photocon-

ductor, optical degradation is accompanied by a large decrease in photo-

conductivity and a narrowing of the spectral response curve (Fig. 4-13).

A short HT in the dark removes the effects of the optical degrada-

tion and restores the cell or photoconductor to its original, undegraded

*
condition. In the cell, I is generally increased, and the effects of

sc

enhancement and quenching on I are decreased by restoration. The
sc

temperature dependences are such that at room temperature and below

degradation and restoration are not effectively competing processes.

Most, if not all, of the work of other researchers on the HT Cu2S-CdS

cell has apparently been done on cells in the optically degraded state.

The properties of a typical cell before HT and with %6 min of HT

are shown in Table 5-1.

The possible states are summarized below:

The restoration HT is at temperatures for which Cu diffusion is
negligible in a well HTed cell. A HT of 140°C for 2 to 5 min for the
cell and 2000C for the photoconductor is sufficient for complete res-
toration (Fig. 4-7).
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State Produced by Stability range

R HT in dark, T 5 360°K All T in dark, T ~ 200°K
in light

D Exposure to light at All T ~ 360°K
T 3 200°K

E Exposure to short X T ~ 200°K unless excited
light continuously

Q Exposure to long A All T
light, forward or
reverse bias, and/or
T 3 200°K

The changes in I with cell state transitions are illustrated schemati-
sc

cally in Fig. 4-8. Figures of roughly similar shape could be drawn for

If and the junction capacitance. Figures 4-22 and 4-25 show the changes

in zero-bias junction capacitance caused by the above transitions more

quantitatively.

Now we examine the effect of HT on the cell. During the initial

HT of a cell after fabrication (a 200°C HT for example) changes in the

junction structure occur rapidly for short times and then more slowly

as time goes on (as shown in Fig. 4-9). As the cell is HT, Cu diffuses

into the CdS and the depletion layer width wd is increased by compensa-

tion of the donors in the CdS forming a quasi-insulating CdS:Cu layer

(i-layer). After several minutes of HT at 200°C the diffusion has

slowed so much that the restoration HT at 140°C is no longer causes

appreciable increase in wd and a distinction can now be made between the

two types of HT. The effects of increasing the 200°C HT time are sum-

marized below:

(1) an increase in wd and a decrease in C

(2) a decrease in AC/C, where AC is the photocapacitance increment

139

f



PROPERTIES

TABLE 5-1

OF TYPICAL CELLS IN THE VARIOUS ELECTRONIC STATES
BEFORE AND AFTER HEAT TREATMENT

Temperature State I (0.70I) If(Vf--+0.3V) C** w**

K * 10o- 8 amp 10- 8 amp pF. H

BHT-E 2.9 50 514 0.60

BHT-Q 0.75 8 408 0.76

RE 1.6 -- -- --
300

RQ 0.8 6 224 1.4

DE 0.8 1 2 0t 2 80
t  1.1

DQ 0.02 0.1 204 1.5

BHT-E 3.1 1.8 976 0.32

BHT-Q 0.9 0.7 515 0.60

RE 2.8 40,000 1300 0.24
150

RQ 1.0 5,000 488 0.64

DE 2.3 50 275 1.1

DQ 0.04 0.003 181 1.7

BHT means that the cell has u
to 130°C for several minutes.

undergone only the fabrication HT of 100

At zero applied bias voltage.

tWith enhancing light on (I has been subtracted).
SC
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(3) a large decrease in I in the DQ state while I in the low
Sc Sc

temperature DE state remains relatively unchanged

(4) an increase in the magnitude of the changes in IS associated
sc

with the TROD effect.

5.1.2 Preliminary Implications

In this section we emphasize a few of the more general and straight-

forward implications of the data.

As shown in Fig. 4-12, the shape of the IS versus wavelength X
sc

curves for the cell remain relatively unchanged as the cell is put into

nine distinct states (the before-HT condition plus the four states dis-

3
cussed above at two temperatures) with a variation in I of 410 . This

sc

relationship implies that the effective photoexcitation takes place in

the Cu2S the properties of which remain invariant in the different cell

states. The fact that both the DE and RE curves at 150°K lie above the

before-HT curve (at 300°K) further implies that the quantum efficiency

of the Cu2S layer is not changed appreciably by extensive HT (X50 min at

200'C in this case). The large difference in shape of the spectral res-

ponse curves in the R and D states of the CdS:Cu photoconductor as con-

trasted with the relative constancy of shape in the I versus X curves
sc

for the cell also supports the argument that the important photoexcita-

*
tion is in the Cu2S.

The existence of the TROD effect (photochemical reaction) with the

same basic characteristics in both the highly Cu doped CdS photoconductor

*
The cell curves are taken by the transient method described in Section
4.3.4 and the photoconductor curves are done by the fast scan method.
However, as is noted in Section 4.3.7, data for the DE-150°K photocon-
ductor was taken by both methods and good agreement was obtained.
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as well as the cell implies that the control of I is either in the
sc

CdS:Cu layer itself or due to its effect on interface conditions.

These considerations lead to the hypothesis that I is given by
SC

the product of two independent factors: (1) a factor n expressing the

spectral quantum efficiency of the Cu2S and (2) a factor 1 expressing

the control of the carrier injection from the Cu2S into the bulk CdS

which depends on the state of the CdS:Cu layer near the junction inter-

face. The time constant for photoexcitation associated with the Cu2S

factor n is much shorter than the time constant associated with the

CdS:Cu factor ~ which controls the current flow depending on whether the

CdS:Cu layer is restored, degraded, enhanced, or quenched.

A further consideration supporting the relationship, I = nr, is
sc

the close similarity in form of the white light current versus temperature

curves for the cell and for the photoconductor shown in Figs. 4-33 and

4-34.

The white light I versus dark, forward-bias current If curve of
scf

Fig. 4-35 shows an almost linear variation between I and If at 300°K up

to the saturation of I S. This single curve represents a variety of con-
sc

ditions from R to D and from partial E to partial Q as the cell is taken

over a complete TROD curve. Thus the I versus I curve suggests that
sc f

the same mechanism is at the basis for control for both IS (illuminated)

and If (dark) and thus that If is controlled by the CdS:Cu layer also.

We shall explore this hypothesis further in Sections 5.4 and 5.5.

The reversible nature of the transitions described in Section 5.1.1

and the fact that they can be performed many times without changing the

general cell properties rules out mechanisms in which there is a loss of

Cu by oxidation or diffusion into the bulk CdS with each transition.
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5.25.2 Junction Structure From 1/C Versus V Analysis

In this section we examine the structure of the junction as inter-

preted from junction capacitance data. Although the interpretation of

the extrapolation of the 1/C versus V curves in order to determine the

effective barrier voltage Vb can be rather involved (as was pointed out

in Section 4.3.8), the determination of the net charge density profile

is straightforward in an asymmetrically doped junction (p-side acceptor

density >> n-side donor density in our case). The reciprocal of the

slope of the 1/C versus V curve is proportional to the net charge

density N(x) which may arise from positively charged traps as well as

uncompensated, ionized donors in the CdS. The barrier voltage is fixed

by the work functions, electron affinities, and band gaps of the two

materials forming the junction. To maintain charge neutrality and to

support Vb, the depletion layer thickness adjusts itself according to

the available charge density to provide the necessary dipole layer.

Considering data for the cell before HT (such as Lindquist's

Fig. 5-2117 reproduced in our Fig. 5-1) the effect of the photocapacitance

on the barrier voltage can be interpreted in two ways. These depend on

how we choose to extrapolate the data to Vb through the region which is

inaccessible to capacitance measurement. Using a direct extrapolation,

the data imply that the effective V is reduced by the presence of the
b

photocapacitance AC from %0.8V to %0.4V in this case. This corresponds

to the situation shown in Fig. 5-2 and the data could be explained in

terms of a very thin, almost metallic layer of interface states whose

charge determines the band bending (the semiconductor-metal-semiconductor

heterojunction theory of Oldham and Milnes5 5'56 ).

143



-3 -2 -I 0 +1

BIAS (volts)

1/C2 versus bias voltage for an un-HT cell at 110°K with and
without photocapacitance excited (from Lindquist, Ref. 17).
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INTERFACE STATES

f sAc = 0

FIG. 5-2. Semiconductor-metal-semiconductor band profile from Fig. 5-1.
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On the other hand the dashed line extrapolation in Fig. 5-1 implies

a charge density profile which becomes larger near the interface with a

constant barrier voltage. Excitation of AC changes the shape of the bar-

rier as shown in Fig. 5-2b. Note that the change in electric field with

AC is much larger in the second situation. We choose the latter model as

being more physically reasonable.

2
For a cell after HT (Fig. 4-24), consideration of the 1/C versus

V curves suggests that an insulating layer is present. The slopes are

the same for three conditions of enhancement (excitation of AC) and are

consistent with the measured donor density in the bulk CdS. Thus the

curves appear to be probing only the CdS which has not been Cu doped.

To explore the situation in more detail we consider a junction with

a semi-insulating layer (of width wi and net charge density Ni) sand-

wiched between the p-type Cu2S (with acceptor density NA and accumulation

layer width wA) and the bulk CdS (with net donor density ND). The thick-

ness of the i-layer is a constant determined by the doping profile in the

CdS, and its effective charge density is determined by its state of res-

toration and enhancement. Starting with the expressions describing such

a system the barrier voltage is given by:

(V - Vf) = 2 [NAw2 + NDWm  - (ND - Ni) wJ + wi(NAwA - NDD)

and for the charge neutrality

NAWA = Niwi + ND(wd  wi

we can eliminate wA and since NA >> ND a N. we find
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',wdw

2 2 2
(A/C) = w = w (1 - NIND) +

dV - Vf D 2qND and C =Vdw

Thus when N NDW is given by the extrapolation of the high reverse
~2

bias slope to Vb as in Fig. 5-3. The resulting hypothetical 1/C versus

V plot for Ni << ND implies a close spacing between the reverse bias

branches. This is not seen in the data of Fig. 4-24 so we conclude that

Ni is not negligible compared to ND .  Using the data of Fig. 4-24, where

the zero bias depletion layer width changes from 3.85p (quenched) to

3.45p (enhanced) we can calculate the approximate change of N. on

1enhancement:
enhancement:

0 Vb

BIAS VOLTAGE -

FIG. 5-3. Schematic 1/C versus V plot for perfectly insulating i-layer.
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AN = N (E) - Ni(Q) = N (wD(Q ) - WD(E))
W.

1

AN ND{1 - wD(E) /WD(Q)} = 0.8 x 104/cm3

If distributed uniformly such a large charge density would render the

i-layer conductive as it does in the R-150°K case shown in Fig. 4-25

and we could probe through it, i.e., the i-layer would no longer dominate

the junction capacitance. We conclude that the charge is concentrated

at the interface and that there are really two regions as suggested by

the R-150°K N(x) profile of Fig. 4-25. The resulting 1/C versus V plot

shown schematically in Fig. 5-5 corresponds much more closely to the

data.

We propose the profile shown in Fig. 5-4a with two important

regions:

I. A highly conducting n-type region containing optically charge-

able states which are mainly responsible for changing the band

,
profile during excitation of the photocapacitance.

II. A low N(x) region where the CdS donors have been compensated

by Cu.

The TROD effect probably occurs in both regions. These regions give rise

to the band profile shown in Fig. 5-4b (assuming a constant Vb) and the

complete 1/C versus V curves would take the form shown in Fig. 5-5. Of

course in a real cell N(x) is smoothly varying and there are no distinct

boundaries between the regions. The Cu diffusion profile would produce

*
This layer may be counter-doped with Cd back diffused from the Cu2S.
The presence of Cd in the Cu2S layer and its redistribution during HT
was suggested by Hill and Kerimidas.3 4
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Schematic charge density
(b).

profile (a) and derived band profile
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0 Vb

BIAS VOLTAGE -

FIG. 5-5. Schematic 1/C versus V plot for charge density profile of
Fig. 5-4. Existing portions of the data are shown in bold
line.

a gradual transition from region II to the bulk CdS (estimated to be

%0.5p wide for the case of Fig. 4-25).

The regions discussed above are present in the 1/C versus V curves

for the restored state as well (see Figs. 4-23 and 4-25), but in this

case region II becomes quite conducting, having an apparent donor density

of 1014 to 1015 /cm3. Upon restoration the effective N(x) of region I

increases to the point where the double layer charge requirements can be

satisfied within region I alone for zero applied bias (with a little

help from region II in the RQ case) allowing us to probe closer to the

junction interface. Thus the density of effective positive charge in

this layer must be very high in the R state and very low in the D state.
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The same basic situation is evident in the data for a cell with

less HT time (Figs. 4-20, 4-21, and 4-22). The effect of HT and Cu dif-

fusion may be thought of as a scaling up of the widths of the regions

described above, which also exist in cells with even shorter HT.

We would expect the roughness of the Cu2S-CdS interface to affect

the value of N(x) derived from the 1/C versus V plots (on the order of

0.5p by microscopic inspection). Because of the roughness, the actual

interfacial surface area is somewhat larger than its projected area.

The larger area decreases the slope of the 1/C versus V curves for small

depletion layer thickness, Wd, thus indicating a higher N(x) than the

actual value. As wd increases, the roughness is averaged out and the

actual area approaches the projected area. Thus the high reverse bias

slope still gives the correct N(x) but the curve will have an upward

concavity at more positive biases when the depletion layer width is

comparable to the roughness. The Vb extrapolated from the high reverse

bias slope will be smaller than the actual Vb in that case. This effect

is thought to be small (changing N(x) by a factor of 2 or 3 at most in a

region <0.5p from the interface) but it may account for a portion of the

apparent increase in N(x) observed near the interface. Lindquist's data

show no upward concavity characteristic of changing effective area down

to wd < 0.1l on un-HT A-face cells.

As was discussed in Section 4.3.9, the junction capacitance C is

dominated by the i-layer in the D state and the measured value of the

photocapacitance increment AC is small compared to C. Thus the charge

density, N(x), near the interface (and hence the electric field there)

may change considerably during enhancement or quenching without affecting
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the measured value of C very much. This is shown in Fig. 4-26. There

is not enough information to calculate the actual dependence of N(x)

and the barrier profile on the measured capacitance in the D state

however.

For these reasons it is felt that the curves for the R state more

accurately represent the dependence of IS on the depletion layer width,
sc

wd = AE/C (where A is the junction area and c is the permittivity of the

CdS). For the restored state the relationship, I = B exp{-a/C}, where
sc

B and a are constants, is found for both the 6 min and the 1 hour HT

cells (Figs. 4-26 and 4-27). A similar relationship was found for the

cell before HT both in this work and by Lindquist4 6 .

The extrapolation of the R state curves to wd =0 gives a quantum

efficiency of %10% for the cell with "1 hour of HT and u30% for the

6 min and before-HT cells.

In summary we have determined the N(x) profiles and found that

there are two discernible regions on the CdS side of the junction. The

data imply that N(x) increases strongly near the metallurgical interface

and that the charge storage responsible for the photocapacitance ffect

takes place there. However, there is a large increase in N(x) throughout

the Cu doped region on restoration and a further increase on enhancement.

The dependence of I on w is felt to be accurate in the before-HT and
sc d

restored, 150°K cases but it is masked by the high resistivity of the

i-layer in the remaining conditions.

5.3 Implications of the TROD Effect

A variety of experimental results demonstrate that the TROD effect

in the cell is of essentially the same nature as that in the photoconductor.
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These results include similar activation energies and temperature ranges

for both restoration and degradation (Figs. 4-5 and 4-7) and the close

correspondence in shape between the white light photocurrent versus 1/T

curves for the cell and the photoconductor shown in Section 4.3.12.

Having shown that a TROD-active CdS layer exists in the cell we examine

the details of the effects of this layer on the junction properties.

These effects include an increase in recombination rate in the layer as

it is optically degraded and/or quenched and changes in the electric

field at the junction accompanying a change in cell state. At the end

of this section we comment on a mechanism for the TROD phenomena.

5.3.1 Comparison of TROD Effects in the Photoconductor and the Cell

The spectra for the photoconductor (Fig. 4-13) indicate a large

decrease in the electron lifetime, Tn, as the photoconductor is optically

degraded. Using the conductivity at the maximum of the spectral response

curve, we calculate a change in lifetime from %10 - 3 sec in the restored

-5
state to 410 sec in the degraded state. This change may be due to

either (1) an increase in the effective number of fast recombination

centers, (2) a decrease in hole trapping at slow recombination centers,

(3) an increase of electron trapping, or (4) a decrease in the effective

number of slow recombination centers. The latter three circumstances

would serve to increase the hole population of the fast recombination

centers.

The change in lifetime produces a shift in the electron quasi-

Fermi level in the enhanced state from 40.4 eV to 40.5 eV below the con-

duction band (at the level of illumination used for the spectra of Fig.

4-13). Values of Efn for the photoconductor states are given in Table 5-2.
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TABLE 5-2

ELECTRON QUASI-FERMI LEVELS AND LIFETIMES FOR VARIOUS STATES
IN THE PHOTOCONDUCTOR

State Illumination T Ef Tn

RE 0.49p 0.19 eV 1.5 x 10 3 sec

DE 0.49p 150°K 0.28 eV 1.6 x 10-6 sec'

I *
R or D Dark >0.4 eV

-3
RE 0.52p 0.39 eV 10 sec

-5
DE 0.52p 0.51 eV 10 sec

300°K
DQ 0.80p |0.6 eV

R or D Dark 30.8 eV

*.

Beyond the limits of measurement.

The response time for the photoconductor is dominated by a large density

of traps estimated (in Section 4.3.7) at 10 15/cm for the RE and DE,

300°K cases.

The data of Section 4.3.7 show that the optical quenching phenomenon

exists in the CdS:Cu photoconductor, and that the ratio of enhanced to

quenched photocurrent is much larger in the degraded state than in the

restored state.

In the degraded state the spectral response of the photoconductor

is considerably narrowed. This may be due either to (1) an increase in

recombination rate for extrinsic light (optical quenching) or (2) a

decrease in the number of extrinsic centers capable of being photoexcited.

Given the increased effectiveness of optical quenching in the degraded
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state we feel the first alternative is most likely.

74These data agree well with the results of Kanev for similar

CdS:Cu crystals. Kanev observed decreased electron lifetimes, narrowed

spectral response, and an increase in the effect of infrared quenching

in the degraded state.

Turning our attention to the cell, we find that the effects of

optical quenching are much larger in the degraded states. The ratio of

I (enhanced) to I (quenched) is always larger for the degraded state

than for the corresponding restored state (Figs. 4-8 and 4-14). In

addition, there is experimental'evidence for a change in enhancement and

quenching rates with optical degradation. A direct measurement of the

rates in the cell (Fig. 4-15) using constant intensity light sources

shows that the rate of enhancement decreases by a factor of at least 3

and the rate of quenching increases by a factor of 10 with degradation.

Although we cannot measure the electron lifetimes in the CdS:Cu

layer of the cell directly the similarity of the quenching properties of

the cell and the photoconductor imply that the same decrease in electron

lifetime takes place in the cell. These similarities include the optical

quenching spectrum, the presence of thermal quenching, and the increase

in quenching effect by degradation.

The change in the rates and magnitudes of enhancement and quenching

in the cell explains the behavior of I and the junction capacitance
sc

during degradation of IS by white light. A complete TROD curve for
sc

degradation of IS by white light at 300°K is shown in Fig. 4-8. HT in
sc

the dark and slow cooling to 300°K puts the cell into the RQ state.

Both enhancing and quenching components are present in white light but

the rate of enhancement is large for the R condition. When the light is
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turned on, IS increases rapidly as the cell is enhanced. After passing
sc

close to a state of complete restoration and enhancement, the cell con-

tinues to degrade and IS is diminished slowly as the cell goes to a D
SC

and partially Q state. The rate of enhancement drops and the rate of

quenching increases on degradation so the cell tends toward a quenched

condition. We may think of the decrease in IS as being due to two pro-
sc

cesses: (1) a smaller part due to the passage from RE to DE (as in

Fig. 4-14) and (2) a larger part due to the change in the balance between

enhancement and quenching with degradation under constant white light.

In summary, we have:

(1) shown that the magnitude of quenching effects increases on

optical degradation in both the cell and the photoconductor

(2) shown that the rate of quenching increases on degradation in

the cell

(3) shown that the electron lifetime decreases in the photocon-

ductor on degradation

(4) explained the behavior of I during degradation with white
sc

light at room temperature.

Since the effects of enhancement and quenching on depletion layer width

are known the preceding is sufficient to explain the experimental obser-

vations discussed in Sections 5.4 and 5.5 following.

5.3.2 Relation of the TROD Effect to Junction Properties

We have shown that a photoconductive layer exists in the cell and

have elucidated some of its properties. Although the comments of this

subsection are not crucial to the arguments in the following sections,

we now wish to explore the relationship of the TROD properties to the
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junction. Remember that backwall illumination is used in these experi-

ments and so the photoconductor layer is always illuminated at the same

time as the Cu2S. During a transient measurement of I in the cell,
2 sc

the photoconductor layer with its rather long decay time is "prepared"

by putting it into a particular state (e.g., DE) by exposure to light.

After a small time delay a probe light is turned on and electrons are

injected from the Cu2S. During the delay the properties of the photo-

conductor layer have changed somewhat. For example, the conductivity

of the photoconductor layer might be given by decay curves like those of

Fig. 4-18. These curves show a rather fast decay in the Q states and a

very slow decay in the RE states. The situation is shown schematically

in Fig. 5-6.

The preceding comments would argue that the photoconductor layer

is just acting as a series resistance but it will be shown in Section 5.4

that the conductivity of the layer does not have a major effect on If

or I S. Thus a more subtle property peculiar to each cell state must
sc

influence the injected current. We wish to postulate here what that

more subtle mechanism may be.

In the cell enhancement and quenching control an injected electron

current and we can observe the associated change in depletion layer

thickness directly with photocapacitance measurements. During enhance-

ment, optical excitation of electrons from defect levels near the inter-

face leaves them positively charged which adds to the effective ionized

donor concentration in the junction region and modulates the junction

profile. The electrons are swept away by the double layer field which

prevents their recombination. It is not known unambiguously whether

these positively charged centers in the cell correspond to any of the
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Relationship of ISc and the CdS:Cu layer conductivity, a,
during a transient measurement. E denotes enhancing light;
P, probe light of quenching wavelength.
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centers responsible for quenching in the photoconductor. The junction

profile in turn controls If and I .
fsc

Although we can't make a conclusive proof that the same centers

are involved in both cases or state the exact nature of this involvement,

the presence of the centers peculiar to optical quenching in a photocon-

ductor does seem adequate to explain the effects observed in the cell.

In order to show that this is plausible we must make a correspondence

between the conductivity of the photoconductor and the net positive

charge density in the photoconductor layer in the cell caused by extrin-

sic excitation. Corresponding to a conductivity of the photoconductor

which is greater than its equilibrium value there will be a positive

charge density in the cell's photoconductive layer after the photo-

excited electrons are swept away by the double layer field. In effect

we have made additional donor centers accessible in the depletion layer

by the photoexcitation. The times for decay of positive charge density

in this layer in the cell appear to be even longer than the times for

photoconductivity decay in the photoconductor crystal, presumably because

of the double layer field. The effect of a change in charge density in

the junction region is seen for example by comparison of the RE (light

on) and RE (light off) curves in Fig. 4-25. The resulting junction pro-

files are shown schematically in Figs. 5-4a and 5-4b.

Thus the electric field near the interface can be appreciably in-

creased by restoration and/or enhancement because of the increased

positive charge density associated with the longer decay time of these

states. We show in Section 5.4 that the electric field in the region

near the interface can have a large effect on the recombination of in-

jected carriers.
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5.3.3 The Mechanism of the TROD Effect

We briefly discussed the actual mechanism of the TROD effect in

the theoretical Section 2.4. The experimental conditions and materials

74
of our work correspond closely to those of Kanev, et al. and his model

appears to describe the observed phenomena well.

The principal characteristics of the model advanced by Kanev follow.

Cu impurity is presumed to form two types of center in CdS crystals with

excess Cd donors: Type I centers are Cu-acceptor Cd-donor pair complexes;

Type II centers are due to Cu impurity present in excess of the Cd con-

centration. It is observed that the higher the Cu concentration over

the Cd concentration, the more rapid and larger are the degradation ef-

fects. It is assumed that the Type II centers are surrounded by a re-

pulsive barrier and are not photoelectronically active. Before optical

degradation, the Type I levels are occupied and form neutral complexes

with the Cd donor levels, thus giving a total small cross section for

the scattering of free electrons. Such Type I centers also are assumed

to have a low electron capture cross section. When Type I centers domi-

nate, therefore, there is a high electron lifetime and a high electron

mobility. The process of optical degradation is to remove electrons

from the Type I centers, placing these electrons on the Type II centers,

and producing Type I' centers from the Type I centers. Since Type I'

centers capture an additional hole, the cross section for free electrons

is greatly increased and their lifetime is decreased. The proposed bar-

rier surrounding the Type II centers accounts for the inability to

achieve optical degradation at low temperatures. A short heat-treatment

(at above %350°K in our case) is sufficient to free electrons captured at
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the Type II centers and to reconvert the Type I' to Type I centers thus

restoring the optically degraded photoconductor. The thermal activation

energy necessary for the restoration process is 41.6 eV (Fig. 4-7).

We suggest here a possible modification of Kanev's model for the

degradation process. Under optical excitation certain defects coalesce

to form deep electron traps (the Type II centers) which are responsible

for the TROD effect. Thermal energy is required to accomplish the dif-

fusion of the defects to the agglomerate and we measure an activation

energy of 40.4 eV for this process. The rates are such that the process

is negligibly slow at at temperatures below 4200°K. The prerequisite of

coincident optical energy suggests that the photoelectronic breaking of

a bond is necessary to the agglomeration of the defects. Thus in this

modification the thermal energy barrier is associated with the creation

of the Type II traps rather than with the filling of already existing

traps as in Kanev's model.

On restoration the trap forming defects are dispersed and the elec-

trons are freed to repopulate the fast recombination centers. The elec-

trons at Type I centers are now available to participate in extrinsic

photoresponse thus widening the spectral response as seen in our experi-

ments (Fig. 4-13).

5.4 On the Mechanism for Dark Forward-Bias Current Flow

The data of Fig. 4-35 show that the short-circuit current IS for
sc

a particular cell is a monotonically increasing function of the dark

forward-bias current If with both currents being controlled by the state

of the cell. Note that If and I are flowing in opposite directions.

In particular, at room temperature, an almost linear relationship between
In particular, at room temperature, an almost linear relationship between
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the two currents exists over a wide range of cell states which implies

an intimate connection between the mechanisms controlling the currents.

Since the state of the photoconductive layer in the cell affects the

junction profile these data suggest that the control of both I and If

can be described in terms of the profile. Gill1 6 and Lindquist 1 7 attri-

buted the modulation of these currents to two different mechanisms: a

conduction band spike modulating I and recombination through interface
sc

states as a pathway for If. They showed that both of these mechanisms

were in turn influenced by the width of the depletion layer in the CdS.

In this section we show that our data are in substantial agreement

with the proposed model of Gill and Lindquist for the control of If (with

some minor modification). In the following section we show that the

control of I can be described without invoking a hypothetical conduc-
sc

tion band spike.

Measurements of the dark If - Vf characteristics of the HT cell

show that the photoconductive layer described in the previous section

cannot be considered as a simple photoresistance or as a region in which

the current is space charge limited (SCL) in series with a diode photo-

voltaic cell. The dark If - Vf curves show no linear behaviour charac-

teristic of dominance by a series resistance in the region of usual

cell operation. This is true for all cell states and for cells with

short and long HT.

For an ideal photovoltaic cell with a series resistance, Rs, the

current is given by

If(Vf) = I [exp o(Vf - IfRs) - 1] - I (5.1)
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where R = RSL under illumination and R = RSD in the dark with RSD >> RSL
s RSL s SD SDRSL'

For voltages above about Vf 2R exp aVf the If - Vf curve would be

dominated by a linear IfR = Vf relationship. Further Van Aerschodt,

47
et al.47 have shown that the change of a and I from one constant value

0

to another when the cell is illuminated cannot be reconciled with Eq.

(5-1) with R being a function only of light intensity. The photocon-
s

ductive layer thus appears to change the diode characteristic in some

other way.

The current is also not limited by the AVf relationship character-
f

istic of SCLC. For all n > 0, a If a AVf relationship would yield a log

If versus Vf curve which is convex upward. This is not seen for any but

the restored states at 150°K and the light-on cases when it would be

least expected.

The absence of photoresistive control has been recognized by

Shiozawa, et al. 1 5 who have modified their early model by the addition

of a qualitative argument including recombination at the interface (with-

out tunneling). This allows the barrier height to be less than 1.2 eV

in the light and accounts for the change in apparent barrier height for

the illuminated case. They feel that the dark If - Vf curves would be

space charge limited by the i-layer near the junction which forms the

potential barrier in the dark. Such SCLC is not apparent in any of the

dark If - Vf curves in this work or the work of Gill and Lindquist,

however.

2
The If/T versus 1/T data of Fig. 4-32 indicates the presence of

two If pathways in the cell, each governed by a different activation

energy. The 1.2 eV activation energy can be identified with current flow
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in a Shockley diode with an energy barrier approximately equal to the

Cu2S band gap. The cell current is governed by this activation energy

only for temperatures above 320° to 400°C so this mechanism does not

dominate in the range where the log If versus Vf slope has been shown to

be independent of temperature. This energy barrier appears to be unmodi-

fied by extensive HT.

The 0.45 eV activation energy may be identified with an average

barrier height for current flow through interface states. This is the

dominant mode of current flow for the range 250° to 350°K and the slope

of the log If versus Vf in this region (and below) is independent of

*
temperature. The transition of dominance from one transport mode to

the other occurs at higher temperatures for low bias voltage.

The 0.45 eV activation energy was also observed by Gill and

Lindquist (for b-face samples). At lower temperatures (T < 250°K)

Lindquist found that I (the value of If extrapolated to Vf) was almost

independent of temperature. This was interpreted as tunnelling through

interface states without thermal activation.

Both Gill and Lindquist assumed a conduction band spike was present

in order to control I . This assumption implies the presence of a

SC

*
From the evidence below we conclude that the 0.45 eV mode is dominant
at 300°K and that the presence of two slopes in the dark If versus Vf
curves is due to a change in the tunneling process and not due to a
change to the 1.2 eV (Shockley diode) mode of transport:

(1) The extrapolation to 300°K of the transition points (from
the 0.45 eV to the 1.2 eV mode) of the log If/T2 versus 1/T
curves (Fig. 4-32) for various Vf values yields a Vf = 0.8
volts at the 300°K transition point.

(2) The slopes of the high V branches of the log If versus Vf
curves are independent of temperature.
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positive energy discontinuity in the conduction band AE . According to
C

the Anderson model for an abrupt heterojunction the discontinuity which

gives rise to the spike is given by:

E = qVbl + qVb2 + 6 + 6 - E
pn g

with the quantities defined in Figs. 5-7a and 5-7b. Capacitance versus

voltage measurements made by Gill and Lindquist for un-HT cells show a

barrier height, Vb = Vbl + Vb2 which lies in the range 0.4<V <1.1 eV

with the most common value of 40.65 eV. Thus according to these data

E < 0 and the resultant barrier profile is as shown in Fig. 5-7a. These
c

data suggest that no spike is present except poss4ibly for very high bias

when a depletion region might be formed in the Cu S. For the AE < 0
2 c

case the electrons injected from the Cu2S are rapidly thermalized down

the discontinuity where they feel the influence of the band profile field.

The control of If by a simple Shockley diode model is contradicted

at room temperature and below by the temperature independence of the

log If versus Vf slope and the presence of the 0.45 eV activation energy.

In addition the model does not allow an obvious mechanism for the depen-

dence of If on cell state. Inclusion of the recombination-generation

mechanism at centers within the depletion layer predicts 1 < n < 2 (in

exp[(qVf/ kT)-l])but the temperature dependence of the log If versus Vf

slope remains the same as for the simple Shockley diode. Further the

supply of holes necessary for such recombination is not available because

of the high potential barrier in the valence band.

Simple recombination at interface states depends on the carrier

density at the interface and thus has the same temperature dependence as

Since the junction capacitance becomes zero (for no i-layer) when Vf-Vb,
the barrier voltage given by Vb = Vbl + Vb2 does not include AE /q
for the condition that AEc < 0. c
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the Shockley diode. Thus thermal excitation over a barrier and simple

recombination and combinations of the two as sole controlling factors for

If appear to be ruled out.

Simple tunneling without recombination as a mechanism for forward-

bias current transport requires that an adjacent isoenergetic state be

present and a spike in the Cu2 S conduction band is the only place where

this can occur. Thus If transport would require a thermal activation

step of at least 1.2 eV up to the tunneling level. The spike height cal-

culated by Lindquist (X0.02 eV), while appropriate to control I ,c is in-

sufficient to modulate If. If such a spike changed from completely

transparent to completely opaque, for example, it would be roughly equi-

valent to changing the bias voltage by %0.02 volts which cannot account

for the magnitude of the changes in If occurring on enhancement and

quenching even in un-HT cells.

A mechanism which combines stepwise tunneling to interface states

and recombination between these states as a pathway for If appears to

satisfy the experimental results. Such a model has been used by Riben

and Feucht5 8 5 9 to describe the excess current in Esaki tunnel diodes.

This model is described in Section 2.2.2. Gill suggested this mechanism

in a qualitative way and Lindquist went on to do calculations which

showed that for a linear distribution (in energy) of interface states

(dNt/dE = constant), the slope of the log If versus Vf curves should be

almost independent of temperature even though thermal excitation to

interface states above the CdS conduction band level was included. As-

suming an energy barrier of height, Vb, and an abrupt junction with

simple depletion layer control of the band profile as in an un-HT cell,

Lindquist found that for 28n < q/kT (i.e., tunneling as the rate limiting
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factor) the current was given by:

If = A exp {-28n((Vb - Vf)} with 1= m*/ND)1/2

where 0 < n < 1, A = B/(q/kT - 2Bn) = BkT/q, and B is a constant contain-

ing dNt/dE as a factor. The same functional form was obtained by Riben

and Feucht 5 8 (except that A = B'N where B' is a constant) for tunneling
t

directly from the lowest point of the conduction band, i.e., no thermal

excitation.

The following considerations support such a mechanism:

(1) Interface states are almost certainly present in large density

due to the large lattice mismatch between CdS and Cu2S.

(2)
(2) The temperature dependence of the log If versus Vf slope is

small at 300°K and below.

(3) The temperature dependence of I [If = I(exp aVf -1)] is

weak below about 250°K.

(4) The dependence on Nt suggests a reason for the sensitivity of

I to fabrication variables.
0o

(5) High currents in the restored states at 150°K with very small

depletion layer widths imply an easy tunneling path through

the barrier.

Consideration of the experimental data in terms of this model sug-

gests the band profile shown in Fig. 5-8 for a HT cell with an i-layer

and leads to the following considerations.

(1) Since holes must tunnel to defect levels within the barrier

to complete the recombination path, recombination is confined

to a region close to the interface. "Interface states" may

exist for a considerable distance from the metallurgical
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FIG. 5-8(d). Band profiles showing effects of enhancement (AC = maximum)
and quenching (AC = 0).

interface, however, because of the irregular surface and the

possible precipitation of Cu2S in the CdS.

(2) The 0.45 eV activation energy arises from the thermal activa-

tion of electrons above the electron quasi-Fermi level in the

CdS to reach an energy such that the barrier is thin enough

for appreciable tunneling to occur. This energy is identified

with an average energy E for electrons which succeed in tun-

neling.

(3) Assuming that the current is proportional to the product of

the tunneling probability and the electron flux normal to the

barrier, the approximate form for the current at each tunnel-

ing energy is
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dIf = A (dNt/dE) (nvt/4) Pt(E) (dE) (5.2)

where A is a constant. The tunneling probability Pt through

a triangular energy barrier of height Eb with an electric

field t is given by

t = exp(-E /2I) (5.3)

where 8 is a constant. For a standard depletion layer model

is given by g = 2(Vb -Vf - E/q)/wd near the interface and

the depletion layer width wd is given by

2d
d (2e/qND) (Vb - Vf - E/q)w d f

and we get finally

If = A'(vt/4) |(dNt/dE) n(E,T) exp[-a(Vb-Vf-E/q)]dE (5.4)

where a and A are constants, vt is the thermal velocity,

dNt/dE is the density of tunneling-recombination centers, and

n(E, T) is the electron density at E.

(4) For a constant bias voltage we can modulate the electric field

by enhancing or quenching the cell as shown in Section 5.2

and in Fig. 5-8d. At each tunneling energy Eb the current

will then increase as exp(-3E /2).

(5) E is not given directly by E = E - qVf, where E is some
0 0

reference energy, but decreases more slowly due to the change

in the band profile with Vf. Thus for higher Vf the band pro-

file is flattened out and the electrons must tunnel to states

*
We have assumed a thin depletion layer between the interface and the i-
layer where the charge density rises as suggested in Section 5.2. The
boundary condition on the right is the electric field in the i-layer
rather than Vb - Vf as in a conventional depletion layer analysis.
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closer to the interface, at higher energies. This sort of

dependence is seen in the data of Fig. 4-32 where the activa-

tion energy does not decrease by the full amount of the for-

ward bias.

(6) Since it is known that Nt depends strongly on preparation

variables, the dependence of I on N can be used to explain
0 t

the wide variation in I for different cells (while a remains
0

relatively constant).

(7) The dependence of I on temperature below about 250°K can be
0

ascribed to the variation of Vb with T and a plot of log If

at constant Vf versus T in this region yields a straight line.

Using the experimentally determined value for t we calculate

a change in Vb of 0.3 - 0.7 mV/°K compared with the value of

40.2 mV/°K for the change in the Cu2S band gap calculated from

data for 80°K and 300°K by Marshall and Mitra3 6.

(8) There are a number of explanations for the change in slope of

the log If versus Vf curves near Vf = 0.4 V. These include

(1) a change in dominance of the tunneling step A-to-B to

dominance by the step C-to-D in Fig. 5-8a, (2) a change in the

variation of the conduction band profile with applied bias ,

and (3) a variable distribution in energy of tunneling-

recombination centers such as is shown in Fig. 5-8c.

*

This variation is contained in the tunneling exponent. For example,

a simple depletion layer gives exp{-c(VD - Vf)I while control by a

simple i-layer (constant field) gives expt-a'(VD - Vf)}.
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(9) At temperatures higher than %320°K for small biases and for

biases of Vf > 0.7 to 0.8 V at room temperature the current

flow is dominated by thermal excitation over the Cu2S con-

duction band step.

In the restored states at low temperatures and for the illuminated

cases If increases strongly (Fig. 4-31) and log If becomes a linear func-

tion of Vf1/ 2 as shown in Fig. 4-30.

For the completely restored HT cell If increases %5 orders of

magnitude on cooling in the dark, the junction capacitance increases,

and the junction becomes very leaky in both directions of current flow.

An increase in junction capacitance on cooling in the dark was also ob-

served by Lindquist1 7 in un-HT cells but to a much lesser degree. This

unusual behavior of If at low temperatures in the restored states sug-

gests that a deep hole trapping mechanism causes the reduction of deple-

tion layer width. This in turn allows increased tunneling and recombina-

tion through interface states which dominates the junction current flow.

Forward bias during cooling apparently aides the trapping process while

reverse bias causes detrapping. These traps must be distinct from those

involved in optical enhancement and quenching since optical quenching is

quite ineffective in reducing the current to the values encountered in

the degraded state. Enhancement and quenching still occur but the range

of current variation is shifted to higher currents. This interpretation

is supported by the large increase in junction capacitance observed for

the restored states at 150°K. If the "cooling enhancement" effect occurs

at all in degraded HT cells, it is very well masked by the presence of

the i-layer.
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5.5 Electric Field Control of Is
sC-

In this section we complete the model of the HT cell by proposing

a mechanism by which the local electric field near the interface controls

the short-circuit current by modulating the loss of carriers via the

tunneling-recombination pathway to the Cu2S valence band.

The data for the restored low-temperature and before-HT states

(Figs. 4-26 and 4-27) show that IS depends exponentially on the deple-
sc

tion layer width wd and hence on the electric field in the CdS near the

interface. We propose that the nonequilibrium carrier density in the

interface region is roughly inversely proportional to the local electric

field and hence that the field controls the loss rate. The possibility

of interfacial recombination control of I was mentioned but not explored
sc

by both Gill and Lindquist. A model based on a tunneling-recombination

mode of transport through the barrier similar to that determining If then

leads to the observed dependence of I on wd.  In deriving an expression
sc d rvn nepeso

for IS we assume the following:
sc

(1) The resistivity of the i-layer is not important for control

of I . This assumption is supported by the arguments in the
sc

last section that the resistivity of the i-layer in the dark

is not important in controlling If. Thus the resistivity is

certainly not important for the illuminated case.

(2) The electric field 6 is constant near the interface as shown

in Fig. 5-9. This is a good assumption for the cell since

the tunneling range is expected to be small compared with the

depletion layer width. For a simple depletion layer model,

for example, 6(x) = (x - wd)qNd/ and since wd = 2EVb/qNd, we
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have, for x << Wd:

& = 2Vb/w d  (5.5)

This is a valid approximation in the before-HT and restored,

low temperature states but must be used with care for the

other situations where the i-layer dominates the junction

capacitance. In the latter cases the local field at the

interface may be varied over roughly the same range but the

total depletion layer width (now containing the i-layer width)

remains relatively constant.

(3) The injected electrons are thermalized at the interface and

the magnitude of the injected flux does not depend on con-

ditions for x > 0. For x > 0, the thermal velocity of the

electrons, vt, is much greater than their drift velocity,

vd = p = -2pVb/wd, so that simple diffusion and mobility

concepts are applicable.

(4) The volume loss rate, U(x), due to recombination-tunneling

is given by

U(x) = -(n - n )/T(x)
0

where T(x), the electron lifetime, expresses the change in

effectiveness of the loss process with distance from the

interface, x. In terms of Eq. (5.2), U(x) is given by

U(x) = - 1 ANtvtPt(x) [n(x) - n ] (56)
4 ttt o (5.6)

For a constant electric field, the tunneling probability,

Pt(x) is
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Pt(x) exp E 3/2/1 = expx }l/2x3/2

exp{ (2Vb/wd) l/2x3/21 (5.7)

where Eb is the tunneling barrier energy (since Eb = ax).

Then for small injection conditions (i.e., the effect of the non-

equilibrium charge density on the electric field is negligibly small)

the equation of continuity is (Sze97):

Dd n/dx -_Pdn/dx - (n-n )/T(x) = 0 (5.8)
0

for steady state and dg/dx = 0. Since this equation is difficult to

solve for T = T(X) and a complete solution may well be physically obscure,

we consider two simplified cases: (1) D d n/dx > 0 with T constant for

_2 2
0 < x < L and T + - for x > L, and (2) D d n/dx = 0 with T = T(x).

0

For case (1) with the diffusion term included, the solution to the

continuity equation for the appropriate boundary conditions is

I= I exp - 1 + - (5.9)
sc o 2D Tr~ 2&2

For the condition

& 2 D _2kT

T 9/D'

the term in parentheses may be approximated to good accuracy by

/ 1+ (D 2D 1  ) 2D

o22 t2h2 T(2b2soi ta 2EI.2 (5.9 b2

so that Eq. (5.9) becomes
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fL0
I c= I exp T- (5.10)

Sc~ Lo j /&J
Equation (5.9) is plotted schematically in Fig. 5-10 versus 1/6 for L =

0

constant and in Fig. 5-11 for & = constant and large. The diffusion term

affects the results only for low fields where it inhibits the decrease of

I . Using the approximation of Eq. (5.5) for the electric field gives
sc

sc I exp(-ywd) which agrees well with the experimental data for the

restored, low-temperature and before-HT cases (y is a constant).

In order to demonstrate the effect of a T which is a function of x

2 2
we assume that D d n/dx = 0 and that T = T exp(x/L) in the region of

0

interest, where L is the effective length of the recombination-tunneling

region (case 2). The results above show that neglecting D d n/dx does

not affect our results appreciably for higher fields when I approaches
SC

I . For this condition
o

I exp - J Tp (1 - e- x/L)
0

These results are shown schematically in Fig. 5-11 versus x for constant

6. We expect that the inclusion of the D d n/dx term would raise the

curve only slightly.

Using the more accurate approximation for the tunneling probability

given by Eq. (5.7) so that T = T exp{+ ~1 /2x3/2} results in only a

small modification:

I = I exp - eu/3 du

se 0

where u = 2/3 &1/3wher u =x.
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sc

Since the definite integral is changed very little if u1 + we can set

it equal to a constant <1, so L + L1 and

1 L
I I exp 4/
sc o i

I0&

Note that L/T has the dimensions of.a surface recombination velocity

(which has a magnitude of z106 cm/sec for cell #61 in the before-HT case).

The model developed above for the dependence of I on junction
SC

parameters may be used to describe the change in I with time during
sc

optical degradation. One such description assumes that the centers

associated with tunneling-recombination are created during optical
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degradation and this gives excellent agreement with the data . However,

since we can demonstrate several equally probable mechanisms we can

draw no conclusions about the nature of the TROD effect from these exerci-

ses but only demonstrate the plausibility of the mechanisms.

In this section we have shown that a model assuming tunneling-

recombination transport through the junction leads to an exponential

dependence of I on 1/E (and hence on Wd) which agrees well with I

versus wd data for the before-HT and restored, low temperature cases from

this work and the work of Lindquist. In past sections we showed the same

*
We can write the expression for the electron lifetime, T, in terms of
the density of effective tunneling-recombination centers, N , as 1/T =
NtOxvt where the cross section, Ox, now corresponds to Pt(xy/4. Then
assuming a monomolecular process, Nt is given by Nt = (N1 - No) X
{1 - exp(-6t)} + No where 6 is the time rate of optical degradation.
Equation (5.10) becomes

Isc = I0 exp (N1 - [1 - exp(- 6t)] + No

which is exactly the form of Eq. (4.1) in Section 4.2.1 describing the
degradation of Isc with time. The constant, A = 7.4, derived from Isc
versus time data using Eq. (4.1) represents the total number of centers
active (Nt = N1) while the constant from the equation above Laxvt(N1 -
No)/pI which goes to LGxvtNo/p& for the restored case equals xl
representing the base level Nt = No of centers active. The latter con-
stant is derived from Isc versus wd measurements. Considering the ap-
proximations made this presents a very consistent picture.

**
Another likely choice would be a model in which optical degradation
determined the amount of charge trapped at the interface, this charge
modifying the electric field but leaving the number of tunneling-
recombination centers constant. For simple assumptions we might expect

Isc to be given roughly by exp{-AA~(t)} where Nx(t) is the number of
centers affected by degradation. Given the complexity of the system it
is unlikely that a choice could be made between these two models on the
basis of Isc versus 1/C and Isc versus degradation time data. It would
seem far easier to study this aspect of the problem in the photoconduc-
tor.
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general dependence for the dark, short-circuit current, If, on 1/E

resulting from the tunneling expression Pt = exp(-Eb3/2 /6). Because of

the similar dependence on band profile (represented by l1/) for both I

and If this model predicts the observed behavior of the dependence of

I and I this model predicts the observed behavior of the dependence of
I and If this model predicts the observed behavior of the dependencesc f

of I on If of Fig. 4-35 for the before-HT and restored 150°K cases.
scf

Since the I versus If relation of Fig. 4-35 is unchanged in form at
scf

300°K in the degraded state when wd remains relatively constant during

enhancement and quenching, the same mechanism probably holds but now the

dependence of I on the total wd is masked by the i-layer width as
scd

shown in Fig. 4-26 for the degraded case. We have also shown that a

plausible mechanism for the dependence of I on optical degradation
sc

time fits the model.

*

It may be noticed that the similarity between the basic models for con-
trol of Isc and If by & apparently leads to the decrease of Isc and the
increase of If as the barrier is narrowed because of increased tunnel-
ing of both currents in contradiction with the observed data. The
explanation of this seeming contradiction lies in the fact that the I
carrier density is being decreased both by the increased field and by
the attrition suffered by recombination. This is accounted for by the
integration along the carrier path into the CdS to determine the remain-
ing carrier density. In contrast, for the case of If we integrate the
tunneling and recombination current over the allowed energies while the
carrier density in the conduction band depends only on the tunneling
energy.
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Chapter 6

CONCLUSIONS

In this section we bring together the implications of the preceding

discussion to present a coherent model for the heat-treated Cu2S-CdS

photovoltaic cell. The ambipolar diffusion lengths near the junction,

the detailed effects of enhancement and quenching in the heat-treated

cell, and the photocapacitance effect have been treated in depth by Gill

and Lindquist whose work is reviewed in Section 1.2.4 and throughout the

previous discussion.

The major contributions of the present work have been (1) the

discovery and exploration of the thermally-restorable optical degradation

(TROD) effect and the description of its role in the heat-treated cell,

(2) the resolution and definition of four stable electronic states in

the cell, (3) the extension of the photocapacitance model to cells with

long heat-treatment times, and (4) the elimination of the conduction

band spike model in favor of a tunneling-recombination model of short-

circuit current control.

The degradation of short-circuit current on heat-treatment of

single crystal cells can be separated into two components:

(1) a relatively small degradation occurring thermally by heat-

treatment in the dark and

(2) a much larger degradation caused by subsequent exposure to

light at room temperature.

The effects of the optically caused degradation can be removed completely

by an additional heat-treatment at a temperature sufficiently low that

no appreciable Cu diffusion occurs. This process, thermal restoration,
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takes place at temperatures above %350'K and is characterized by an

activation energy of %1.6 eV. Optical degradation occurs at temperatures

above %200°K and is governed by an activation energy of %0.4 eV. The

thermally-restorable optical degradation phenomena is closely similar to

"photochemical reactions" occurring in CdS crystals; optical degradation

and thermal restoration occur with the same basic characteristics in

both the cell and in CdS:Cu photoconducting crystals.

We have shown that the short-circuit current is given by the prod-

uct of two independent factors, symbolically I = n(Cu2S) p(CdS:Cu) with

n expressing the spectral quantum efficiency of the Cu2S for supplying

electrons to the junction and 4 expressing the control of the CdS:Cu

layer on the injected current. This conclusion was drawn from the con-

stancy of form of the short-circuit current spectral response curves as

the cell state is changed, and the existence of the TROD effect in both

the cell and the photoconductor. The data imply that n is relatively

unchanged by heat-treatment effects.

The junction capacitance versus bias voltage data indicate that

there are two important regions of positive charge density in the CdS:Cu

layer of the heat-treated cell. A thin region near the interface con-

tains a large density of positively chargeable centers which are respon-

sible for the photocapacitance effects and can cause large changes in

the junction transport properties by modulating the electric field there.

Between the photocapacitance region and the bulk CdS is an intermediate

region of low charge density (called here an i-layer) which dominates the

junction capacitance under most conditions. In the degraded states and

the restored, 300°K states the large changes in charge density in the

high charge density region associated with the photocapacitance still
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occur and modulate the current strongly but changes in the junction

capacitance are masked by the presence of the i-layer. In the restored,

150°K states, the conductivity of the i-layer is increased enough to

probe close to the interface with 1/C versus V measurements and the

changes in junction capacitance caused by enhancement and quenching (the

photocapacitance) can be observed.

By comparing the properties of the properties of the TROD effect

in the photoconductor to those in the heat-treated cell we have shown

that a TROD-active photoconductive layer exists in the cell and controls

the short-circuit current. We have further shown that optical degrada-

tion increases both the rate and the magnitude of the effect of quench-

ing in the cell and thus, with the knowledge of the effect of the photo-

capacitance on the junction profile, the relationship of the various cell

states to the local electric field at the junction is explained. Although

the identification of the TROD-active centers with the centers responsible

for enhancement and quenching is not definitely established (and is not

necessary for the arguments that follow) we have shown the plausibility

of a model based on this identification in controlling the electric field.

Our data lead us to substantial agreement with Gill and Lindquist

that the mechanism for dark, forward-bias current flow is transport via

tunneling and recombination through interface states to the Cu2S valence

band. No photoresistive or space-charge limited current control was seen.

Since no experimental data to our knowledge shows a conduction band

carrier voltage greater than the Cu2S band gap energy (1.2 eV) we conclude

that the conduction band discontinuity at the interface is negative and

that no conduction band spike exists.
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The dark, forward-bias current versus temperature data show that

two current pathways are present. The first is characterized by an

activation energy of 1.2 eV and is associated with thermal excitation of

carriers directly into the Cu2S conduction band. This mode is only opera-

tive at temperatures above 300°K for normal biases. The other pathway

is characterized by an activation energy of 0.45 eV which is operative

at 300°K and below, is associated with the tunneling-recombination mode

of transport. We suggest that the tunneling-recombination takes place

close to the interface and requires both a thermal and a tunneling step.

This leads to a log dark, forward-bias current versus voltage curve with

a slope which is almost temperature independent as observed in the data.

The tunneling-recombination model leads to a modulation of the

dark, forward-bias current If such that for constant bias voltage,

If a exp(-B/I) where B is a constant and & is the local electric field.

Thus the dark, forward-bias current is modified by the effect of enhance-

ment and quenching on the electric field in a way which agrees qualita-

tively with the dependence inferred by the experimental data.

The tunneling-recombination model also leads to a relation for the

short-circuit current I sc, IC a exp(-B'/f) which agrees well with the
sc

before heat-treatment and restored, 150°K data and explains the data for

the remaining states for which the i-layer dominates the junction capa-

citance. The direct proportionality of the short-circuit current to the

dark, forward-bias current completes a coherent picture of the cell's

operation.

The commonly reported crossing of the light and dark current-

voltage curves follows directly. Illumination changes the state of

enhancement, modifies the electric field, and thereby alters the current
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transport mechanism for the illuminated case.

The role of interface states in the cell is important but still

not well understood. In lightly doped heterojunctions charging of

interface states may bend the bands on both sides of the interface con-

siderably (possibly to the extent of forming depletion layers in both

materials). In our case, however, the movement in energy of the inter-

facial layer is limited by the large a acceptor density in the Cu2S

which can accommodate a large interfacial charge without appreciable

change in its portion of the barrier voltage. The main effect of inter-

face charging is a change in depletion layer profile in the lightly

doped material. Again we need only consider the CdS:Cu layer.

A conjectural but quite plausible model of the role of interface

states is as follows. The number of tunneling-recombination centers is

more or less fixed by preparation variables. Other centers, near the

interface but characteristic of CdS:Cu, are positively charged by enhance-

ment to modulate the electric field in the photocapacitance region. The

TROD effect takes place in the i-layer, modulating the effective donor

density there and thereby setting the electric field boundary condition

on the photocapacitance portion of the depletion layer (roughly equiva-

lent to forward biasing the photocapacitance region of the cell). Thus

both the photocapacitance and TROD phenomena modulate the current through

the tunneling-recombination centers.
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Appendix I

RELEVANCE TO THIN FILM CELLS

In this section we show the relevance of our work on single

crystal cells to the properties of thin film cells, in particular the

existence and magnitude of the TROD effect in thin film cells.

The effects of heat-treatment (HT) as part of the regular prepara-

tion process for commercial thin film cells are increased stability and

efficiency. However, cells of comparable efficiency and stability can

be made from single crystals which are not subjected to HT after fabrica-

tion (as shown by Gill 1 6 and Lindquist 17). By the standards of HT used

on single crystal cells, the HT used for commercial cells is rather

severe: 2 min at 250°C in air, followed by 2 hrs at 200°C and 30 hrs at

130°C while being encapsulated in plastic (Shiozawa 15). Assuming that

the process is regulated by the diffusion constant of Cu in CdS, 2 min

at 250°C is equivalent to %15 min at 200°C using Sullivan's diffusion

27
constant . Thus, in terms of Cu diffusion, our HT cells with 6 to 100

min of HT at 200°C should be quite comparable to the commercial thin film

cells. The depletion layer widths range from 1 to 3 .5p in both types

15
of cells (Shiozawa , p. 53).

Most if not all of the effects seen by Gill, Lindquist, and in

this work are present in both types of cells. These include:

(1) enhancement and quenching of response by secondary light

(2) a decrease in output with extended HT*

On HT the output of the thin film cell first rises to a maximum then
decreases. In single crystal cells the maximum output is reached with
much less HT and the decrease on further HT is much larger.
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(3) the temperature independence of the dark log If-Vf slope

(4) crossing of the dark and light If-Vf curves

,
(5) an apparent phase transition in the Cu2S at 82°C

(6) the TROD effect.

In general, the magnitudes of these effects are much larger in the single

crystal cell.

By applying the experimental techniques used in investigation of

the single crystal cell the TROD effect was shown to exist in the thin

2
film cell as well. A small `3 x 5 mm section was cut from a commercial

(Clevite) thin film cell, mounted in the temperature cycle apparatus,

and restored for 2 min at 175°C. The short-circuit currents in the

restored and degraded states at %300°K are shown below:

2 Current, amp
Illumination Intensity, mw/cm Restored Degraded

white light 14 1.45 x 10- 4  1.25 x 10- 4

0.53p (enhanced) 0.28 5.3 x 10 6  5.3 x 106

0.90p (quenched) 0.57 4.3 x 10- 6  1.1 x 106

The cell degrades rapidly in white or near CdS bandgap light and restora-

tion appears to have approximately the same temperature range as in the

single crystal cell. The enhanced current is virtually unaffected by

degradation but the quenched current is reduced by a factor of 4.

There are several reasons for the relatively small magnitude of

the white light TROD effect in the thin film cell as compared with the

single crystal cell.

(1) The magnitude of the quenching effect (as measured by the ratio

*

These phase transition effects are described in Section 4.3.14 and by
Palz, et al.108,1 0 9 .

190



of enhanced to quenched short-circuit current at O.9P for

example) is much less in the thin film cell.

(2) The small thickness of the Cu2S in the thin film cell may

limit the amount of Cu available for diffusion into the CdS.

(3) Diffusion of Zn from the back contact of the thin film cell

may influence the action of the TROD effect. The diffusion

rate would be increased by the presence of grain boundaries

in the polycrystalline CdS thin film. According to Kanev7 4

the Cu concentration must exceed the excess Cd donor concentra-

tion in the CdS in order for the TROD effect to occur. Thus

diffusing more Cd into a TROD-active CdS crystal would be

expected to reduce the magnitude of the TROD effect. Zn may

well play the same role.
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Appendix II

EFFECTS OF H2 ANNEALING ON THE CELL

A portion of the long term loss of response in thin film cells

appears to be eliminated by annealing in H2 and subsequent exposure to

air. 10  A short experiment was performed to determine the effect of

such a H2 anneal on the TROD phenomena in the single crystal cell. Two

cells with identical fabrication procedures were chosen and subjected to

HT, one in air at atmospheric pressure and one in H2 at about one atmo-

sphere. The short-circuit current, depletion layer width, and the net

donor density of the bulk CdS from 1/C vs V plots before and after HT

are summarized below:

State 150°K 300°K 150°K 300°K

Cell number 61 62

HT %6 min in air 6 min in H2

Before HT

I , 10 amp E 2.4 2.9 1.3 1.5
Q 0.9 0.8 0.7 0.6

wd, Q - 0.78 - 0.62

ND 10 /cm- 0.47 - 0.41

After HT

I , 10- 8 amp RE 2.8 1.6 2.0 0.9
RQ 1.0 0.8 0.9 0.1
DE 2.3 0.8 1.8 0.7
DQ 0.04 0.02 0.009 0.02

wd, i RQ 0.66 - 0.48 -
DQ - 1.55 - 1.27

*2 2

With 0.7p illumination at 9.3p/cm . Cell area %0.035 cm
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The differences in the parameters after the heat treatments are within

the variations due to random fabrication variables and we conclude from

these data that the H2 heat treatment does not affect the TROD phenomena

in the single crystal cell.
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